聲光調制器的兩種衍射類型以介質中的超聲頻率及聲光作用長度為分類依據,聲光調制產生的衍射現象可分為拉曼-奈斯(Raman-Nath)衍射和布拉格(Bragg)衍射兩種類型。1,拉曼-奈斯衍射當超聲頻率低,光波的入射方向垂直于超聲場的傳播方向且聲光互作用的長度較短時,聲光介質相當于平面光柵,當有光波入射到介質內,光的衍射規律遵循普通相位光柵的衍射定律,就會產生拉曼-奈斯衍射。由于聲波長λs 比光波長λ大的多,當光波平行通過介質時,由于不受聲波波面的影響,所以介質折射率的變化只影響光波的相位,即光波通過介質折射率大的部分時,光波波陣面將延遲,通過介質折射率小的部分時,光波波陣面將超前,由此導致光波波 ...
電光調制器的實際用途和應用(一)基本上有兩種類型的調制器:體調制器和集成光學調制器。體調制器由離散的非線性光學晶體制成,通常用于實驗室工作臺或光學平臺。它們具有極低的插入損耗和高功率處理能力。此處不討論的集成光調制器使用波導技術來降低所需的驅動電壓,是特定于波長的。與體調制器不同,這些調制器是光纖尾纖且結構緊湊。在簡要討論了電光效應之后,本應用筆記將描述體調制器的使用和應用。電光效應線性電光效應是折射率的變化,它與外加電場的大小成正比。1 外加電場對折射率的影響,可以通過任意偏振的光束觀察到晶體中的方向,由三階張量描述。忽略物理量的矢量性質,外部電場對晶體折射率的影響具有以下形式其中 是折射 ...
電光調制器的實際用途和應用(二)調幅為了理解電光幅度調制器的操作,我們首先考慮一個電光波片。 假設與晶體主軸成 45偏振的光束平行于電光晶體的第三軸傳播。 在沒有外加場的情況下,晶體通常是任意延遲的多階波片。當外加電場時,電光效應會在不同程度上改變沿兩個晶體方向的折射率,從而改變 有效波片的延遲。如圖 2 所示,一個簡單的幅度調制器的幾何結構由一個偏振器、一個用于零延遲的電光晶體切割和一個分析器組成。輸入偏振器保證光束與晶體主軸成 45° 偏振。晶體充當可變波片,隨著施加電壓的增加,將出射偏振從線偏振(從輸入旋轉 0°)變為圓偏振、線偏振(旋轉 90°)、圓形等。分析儀僅透射已旋轉的出射偏振分 ...
DMD在全息顯示器中應用本文介紹一種數字微鏡器件(DMD)全息顯示技術。系統利用激光二極管(LD)陣列,應用結構照明(SI)來擴展DMD的小衍射角。為了消除SI的衍射噪聲,在傅里葉濾波器中采用有源濾波器陣列,并將其與LD陣列同步。利用DMD的快速運行特性,通過時域復用降低散斑噪聲。此系統可在大視角下觀察到無斑點噪聲的全息圖。數字微鏡器件DMD全息顯示的另一個主要問題是相干光源的散斑噪聲。散斑是一種由散射相干光產生的隨機干涉圖樣,它會嚴重降低全息圖的質量。此外,高強度的相干斑干涉可以損害人類的視覺系統。通過對不同隨機相位圖生成的全息圖進行時域復用處理可以實現:通過疊加具有不相關散斑圖的多個全息圖 ...
源。常使用聲光調制器(AOM)的衍射效應對信號光進行移頻,移頻造成的頻率差,是交流電流發生的重要因素,所以需要集中,這也就限制著激光器頻寬,所以COTDR通常使用單頻窄線寬激光器。從單模光纖中不同位置產生的信號光的偏振態并不相同,所以需要擾亂參考光的偏振態,并經過多次測量以獲得信號光與參考光在不同偏振態匹配條件下的平均相干檢測結果。上面是COTDR具體結構圖,激光器發出的激光經耦合器分成兩束,一束經過聲光調制器調制為探測光脈沖,再經耦合器注入被測光纖。返回的背向瑞利散射光信號與參考光混合,二者產生中頻信號由平衡探測器接收。平衡探測器輸出帶中頻信息的電流信號,最后經放大,模數轉換后,由數字信號處 ...
光波前的空間光調制器可以以視頻速率更新全息圖,但是還不適合應用于移動全息視頻。要構建移動全息視頻顯示器,需要跨越空間帶寬積(決定了全息圖像的尺寸和視角。靜態全息圖以亞波長密度記錄全息信息,可以具有大的視角,而空間光調制器的像素尺寸大、像素數小,當前的空間光調制器的空間帶寬積比靜態全息介質小數百倍,因而視角小)、大的相干背光源(操縱光需要復雜的光學組件和大空間要求,全息視頻顯示很難如當今的平板顯示那么薄)、實時計算全息圖所需的巨大計算資源消耗(針對視頻幀率高質量的全息圖,已有的提高計算速度的優化算法依賴于集群處理器或者高性能的并行處理系統)等障礙。技術要點:基于此,韓國三星電子的Jungkwue ...
建立在快速聲光調制器的基礎上。通過X AOD/Y AOD串聯在4f系統中實現空間光調制,用于3D RAMP顯微鏡,實現40kHz雙光子激發體積的全息成形。使用3D-CASH,以40kHz的頻率從神經元進行串行采樣,3D位置可自由選擇。通過使用覆蓋細胞體及其預期位移場的尺寸優化的激發光模式瞄準每個神經元,消除運動偽影。從清醒小鼠視覺皮層中的GCaMP6f記錄推斷的尖峰率跟蹤移動條刺激的相位,與層間神經元對相比,內部之間具有更高的尖峰相關性。3D-CASH提供了對3D微回路中體內神經元活動的毫秒相關結構的訪問。圖1、3DScope的原理圖2、激發光的holographic patterning圖3 ...
鏡,以及空間光調制器和自適應鏡頭。對于超快激光和超強激光,Phasics自適應系統能夠在真空環境下校正像差。在一套自適應光學系統中放入Phasic的高分辨率SID波前傳感器以及可變形鏡,并且得益于自適應光學的控制軟件,能夠得到良好的閉環效果。Phasics的專家同樣能夠依據應用,為選擇變形鏡提供指導意見,為整個系統提出意見。Phasics的自適應光學為工程師、研究人員和制造商提供全方面的支持。傳統自適應光學結構傳統的自適應光學系統,放在平行光路上,一套所屬系統調節光斑尺寸,并且SID4傳感器位于變形鏡的成像面上。SASys軟件通過測量變形鏡的每個驅動響應函數后,執行校準過程,并且使自適應系統趨 ...
技術將駐波電光調制器置于激光腔中。當用電信號驅動時,這會產生腔內光的正弦幅度調制。在頻域中考慮到這一點,如果模式具有光頻率 ν 并在頻率 f 處進行幅度調制,則所得信號在光頻率 - f 和 + f 處具有邊帶。如果調制器以與腔模式間隔 相同的頻率驅動,則這些邊帶對應于與原始模式相鄰的兩個腔模式。由于邊帶被同相驅動,中心模式和相鄰模式將被鎖相在一起。調制器在邊帶上的進一步操作會鎖定 - 2f 和 + 2f 模式的相位,依此類推,直到增益帶寬中的所有模式都被鎖定。如上所述,典型的激光器是多模的,并且沒有根模播種。因此需要多種模式來確定使用哪個階段。在應用了這種鎖定的無源腔中,無法轉儲原始獨立相給出 ...
S是一種空間光調制器。它利用液晶的電控雙折射現象,在驅動電壓下折射率連續變化,實現對入射光的相位調制。但由于液晶的一些特性,驅動電壓改變量和相位改變量是非線性關系,實際使用中需要測量并確定相位調制特性曲線。現介紹一種相位分析方法——白光干涉法,來確定LCOS芯片的相位調制特性曲線。白光干涉法采用邁克爾孫干涉儀的結構,在參考鏡前設置補償玻璃板(同LCOS芯片前的玻璃板),消除對光路的影響,從而使參考光和反射光達成白光干涉條件。分析干涉圖可得到LCOS芯片的相位輪廓,進而分析相位調制的特性曲線。上圖為白光干涉法的裝置示意圖。白光由確定中心波長的鹵鎢燈發射,經毛玻璃散射。然后由線偏振片獲得與LCOS ...
或 投遞簡歷至: hr@auniontech.com