k),EOM電光調制器(美國Conoptics),PEM光彈調制器(美國Hinds Instruments)。其中光彈調制器因為其各向同性,無自然雙折射影響,大孔徑,大容忍角等特點,成為偏振成像最理想的調制器件。如下是基于光彈調制器的偏振成像系統。圖1 基于光彈調制器搭建偏振成像檢測系統光路圖這套光彈偏振成像系統的技術難點是,由于光彈調制器的調制頻率(40-60KHz)與相機采樣頻率(30-100hz)存在比較大的差別,所以同步和計算是這個技術的核心。一些已經發表的關于利用偏振成像進行油膜檢測的文獻如下:1,水面溢油可見/近紅外偏振光檢測方法研究。王峰,楊錦宏,李小明,葉振良,激光與光電子學進 ...
Q開關,屬于電光調制器一類;常用于光脈沖能量放大、cavity-dumped laser、再生放大、材料加熱、五維信息存儲、時域熱反射測量、調頻、光通信等領域;脈沖選擇器如以下幾部分組成:脈沖激光器、分光棱鏡、格蘭棱鏡、電光調制器(普克爾盒)、調制器驅動等;如上圖所示,脈沖激光經過棱鏡分為兩束,經過格蘭棱鏡后,以一定的偏振態入射EOM后,由于電致晶體產生電光效應,使出射光發生偏轉,以合適偏振態透過棱鏡;另外一束光在探測器上產生電信號,電信經過調制器驅動處理、放大后,給EOM提供驅動提供參考信號,驅動根據參考信號輸出高壓脈沖信號,在調制器上產生電光效應;給晶體施加電壓,電場導致晶體中分子發生取向 ...
出來:這就是電光調制器(EOM)和聲光調制器(AOM)。EOM——通常被稱為普克爾盒,它是基于晶體的,晶體會根據外加的電信號旋轉輸入線偏振光的偏振面。當與晶體輸出端固定的線性偏振片組合使用時,將產生對激光光束強度的調制。有許多晶體支持這種電光效應,包括BBO、KD*P和CdTe,稱為普克爾效應。這些可以配置為以各種不同的操作方式;如剛才描述的強度調制器,或可變偏振旋轉器。在EOM中,外加電壓使入射光偏轉。然后可以用偏光片通過或阻擋光束,從而調制光束的強度。AOM實際上是一種可變波束偏轉裝置。它利用壓電換能器連接到透明材料的一側,如各種玻璃、石英、TeO2。當以射頻驅動時,壓電換能器會在晶體內產 ...
lator)電光調制器,對激光光場進行射頻電光相位調制,然后將調制后的激光信號經過偏振分束棱鏡(PBS)與四分之一波片(λ/4)進入光學腔,然后通過反射到達光電探測器,偏振分束棱鏡(PBS)與四分之一波片(λ/4)的作用就是讓腔反射光進入探測器。然后對反射光信號進行相位解調,得到反射光中的頻率失諧信息,產生誤差信號,然后通過低通濾波器和PID(比例積分電路)處理后,反饋到激光器的壓電陶瓷或者聲光調制器等其他響應器件,進行頻率補償,Z終實現將普通激光鎖定在超穩光學腔上。關于PDH技術的理論細節可以在一些綜述論文和學位論文中找到。為了實現PDH鎖定,需要一些專用的和定制的電子儀器,包括信號發生器, ...
后,激光經過電光調制器對激光進行一個射頻電光的相位調制,經過調制后的信號,再經過一個PBS(偏振分束鏡)和一個波片((λ/4)進入我們的超穩腔與超穩腔進行諧振,反射出來的光再次經過偏振分束鏡和波片被反射到光電探測器中,然后對其進行相位解調后得到誤差信號,誤差信號通過混頻器以及低通濾波器進行處理后,得到的信號反饋到激光器的壓電陶瓷或其他響應部件進行補償頻率,Z終實現激光器另一路激光輸出頻率的穩定。PDH穩頻技術的核心是通過光學超穩腔產生一個誤差信號,其核心部件就是光學超穩腔,超穩腔的性能直接影響了Z終輸出的激光頻率的穩定性。所以光學超穩腔的選擇顯得尤為重要。在為您的應用選擇理想的腔體設計時要考慮 ...
次:一次作為電光調制器調制斯托克斯光束的驅動頻率,另一次作為外部鎖相環的 LIA 輸入通道 2(B 中)的參考。泵浦光束由硅光電二極管檢測,然后被發送到 LIA 的輸入通道 1(In A)。來自輸出通道 1(Out A)的信號被發送到數據采集卡以進行圖像采集。來自輸出通道 2 (Out B) 的信號被最小化(通過調整相移)。2.1 單通道鎖相放大器配置圖 2:典型的鎖定放大器配置設置圖 2 演示了用于 SRS 顯微鏡實驗的 LIA 的初始設置。在初始設置時,必須重新獲取鎖相環。輸入均配置為 AC:50 歐姆。通過調整相位度數優化相移 (Df),直到 Out A 最大化(正值)并且 Out B ...
(AOM)或電光調制器(EOM)進行調制。調制頻率通常在MHz范圍內。這有助于減少光熱膨脹產生的背景,提高圖像采集速度。在本應用說明中,泵浦光束被AOM調制在2MHz左右。為了使泵浦和斯托克斯光束在時間上保持一致,一個電動延遲臺被用來調整其中一個或兩個光束路徑的長度。對于帶有光譜聚焦的飛秒SRS,延遲臺也被用來微調泵浦和斯托克斯光束之間的能量差。像大多數其他非線性光學顯微鏡一樣,光束掃描方法通常用于CARS和SRS圖像的采集。一對振鏡-振鏡或振鏡-共振掃描頭被放置在物鏡前。在本案例中,使用了一對振鏡(GVS 102, Thorlabs)。物鏡/冷凝器、檢測器和數據采集在掃描頭之后,光束被引導到 ...
過利用不同的電光調制器作為快速執行器,這種方法可以擴展反饋帶寬超過150 kHz重復率的相位鎖定和載波包絡的抵消相位鎖定,我們分別得到殘余相位噪聲21.8 mrad(18.1as)和86.1mrad(71.3as)的穩定光的擊打信號和載波包絡的抵消頻率。我們通過測量兩個梳齒之間的相對線寬來驗證這個架構,它揭示了在1秒平均時間內,環內跳動的分數不穩定性小于環外跳動的分數不穩定性小于環外拍相位噪聲為145 mrad (120 as)。這些結果表明,鉺光纖激光技術與高帶寬有效反饋相結合,可以保證在超低噪聲條件下對光學基準進行相干跟蹤。超低噪聲OFC為高精度的、高分辨率的光譜學提供了一個通用的工具。超 ...
成調制信號給電光調制器(EOM),同時來解調誤差信號;激光鎖頻/穩頻(LLB)跳過解調過程并只提供伺服控制或者控制信號傳輸回激光器。Out2,來自于LLB里的快速PID控制器,隨后被直接連接到激光器的壓電陶瓷來精確地調控激光器的頻率, Out3被接到激光器的溫度控制。同時我們用頻響分析儀(FRA)來測量閉環系統的干擾抑制,這里它生成一個正弦掃頻偏移信號并使用PID控制器作為加法器來注入PID控制環路信號(In 1)。為了實現這個求和效果,我們通過設置一個輸入矩陣如作為加法器來配置PID控制器并且比例增益設置為0dB。加法器的輸出被分成兩路,一路提供誤差信號給激光鎖頻/穩頻,另一路被接到 FRA ...
有人提出采用電光調制和波長調制半導體激光器的方案。Watkins采用壓電晶體振蕩的方法產生拍頻,實驗測量了SiO2膜,zui佳測量不確定度可達360pm。以上理論研究和實驗表明,干涉式橢偏測量技術對于實時、快速薄膜測量有很好的應用價值與市場潛力,但外差干涉測量中存在的非線性誤差是阻礙該技術實際應用的主要原因。外差干涉測量系統中的非線性誤差一直是國內外研究熱點,研究人員對激光源、偏振分光鏡、波片、反射鏡等誤差源開展了很多研究工作,并取得了許多有意義的研究成果,提出了多種非線性誤差測量與補償的方法。在激光干涉測量非線性誤差研究中,偏振分光鏡(Polarizing Beam Splitter,PBS ...
或 投遞簡歷至: hr@auniontech.com