單光子是光的最小能量單元。常見單光子探測器根據光電效應制作而成,這種機制的主要是雪崩二極管,由于其探測效率低、暗計數比較大,限制其應用。而工作于超導態的單光子探測機理在100年以前已經被發現,隨著近代微電子、微加工技術的出現,使得超導單光子探測器才成為可能。超導單光子探測器(SSPD)由納米帶隙形式的超薄超導膜組成。為了更高效的探測單光子,該帶隙通常被做成曲線型。為了可以產生電脈沖,在超導帶加DC電流偏置,形成超導臨界態。當窄帶隙吸收光子后,形成具有非平衡濃度的準粒子區域。 此時,電流密度超過臨界水平,并在納米帶上形成電阻區域。該電阻區域是由于單光子在該位置打破了該點超導態,形成一個熱點,熱點 ...
單光子計數器現可分兩大類:時間相關單光子計數器和單光子計數器/單光子探測器;前者更多被稱作時間相關單光子計數器(TCSPC),更多應用在比較關心單光子對應的時間信息,而其根據分辨率不同、通道數不同又存在差異;后者更多被稱為單光子探測器,因為其內部集成有APD可探測單光子,對于要求探測器精度不高的場景,應用更加偏重單光子的數量,這種產品既涵蓋了單光子探測器的功能,又集成了單光子計數器的功能。本篇著重介紹后者,單光子計數器/單光子探測器(SPD)。基本框圖如下圖所示,主要由APD、偏壓控制、溫度控制、信號采樣、信號處理模塊、MCU控制器組成。圖1 系統框圖從上圖可看出,其核心部件是APD;當光照射 ...
程。時間相關單光子計數法(TCSPC)是目前測量熒光壽命的主要技術,其工作原理如下圖所示:使用一個窄脈沖激光激發樣品,然后檢測樣品發出的第一個熒光光子到達光信號接收器的時間。由時幅轉化器(time-amplitude,TAC)將該時間成比例地轉化為對應的電壓脈沖。再將該電壓脈沖通過A/D轉換通入多通道分析儀(multi-channel analyzer),在多通道分析儀中,這些輸出脈沖被依次送入各通道中,在對應通道中計入一個信號,表明檢測到壽命為該時間的一個光子,經過幾十萬次重復之后,各個通道累計的光子數不同,從而就獲得了與原始波形一致的直方圖,由于在某一時間間隔之內檢測到光子的幾率與熒光發射 ...
ea),采用單光子計數(TCSPC)法。通過TRPL來進一步研究比較了TiO2-PAN和P25-PAN兩種催化劑的光學性能。如圖1所示,TiO2-PAN和P25-PAN的衰變曲線用雙指數函數進行了很好的擬合,據此來計算他們的壽命。結果表明,TiO2-PAN相比于P25-PAN表現出更長的載流子壽命,分別為TiO2-PAN(2.075ns)和P25-PAN(1.275ns),進一步證明了TiO2-PAN的高效電荷分離。TiO2-PAN良好的光學特性是由于其粒徑較小、結晶率較低,這有利于配體對TiO2的LMCT敏化有好處。因此,在可見光照射下TiO2-PAM作為LMCT的增敏劑表現出比P25-PA ...
001%。而單光子雪崩二極管(SPAD)因其高靈敏度,能檢測單個光子,極大地提高了弱拉曼信號的檢測能力,并且其低噪聲特性使得在低信號水平下仍能獲得高信噪比的拉曼光譜信號。還可以在極短的時間窗口內進行信號采集,避開伴生熒光的峰值時間,從而減少熒光干擾,進而能夠顯著增強拉曼信號的檢測能力。所以單光子雪崩二極管(SPAD)是目前拉曼檢測較為常用的器件但是目前市面上商用的SPAD單光子雪崩二極管大多都為單點式,而單點SPAD在此研究中的使用還是回受到不小的限制,因為單點SPAD需要配合單色儀進行逐波段掃描探測,這就導致了測算結果的速度會非常慢,無法快速得到需要的數據針對這一不足,Pi Imaging與 ...
分超導納米線單光子探測器(SNSPDs)可以使time-bin量子比特解析為80ps寬的倉。波長復用被用來實現多個高可見度的通道配對,這些配對共同加起來形成了一個高符合率。每對配對可以被視為光子糾纏的獨立載體,因此整個系統通過使用波長選擇性交換適用于靈活網格架構。每個通道的亮度和可見度被量化,作為泵浦功率、收集效率以及符合率的函數。在低平均光子數($$μ_L=5.6×10^{-5}±9.0×10^{-6}$$)時8通道系統可見度可達到平均99.3%,而在較高功率時($$μ_H=5.0×10^{-3}±3.0×10^{-4}$$),演示時總符合率為3.55MHz,平均可見度為96.6%。糾纏光子 ...
以明亮地發射單光子,并且自旋可以被光學手段控制,晶體中心可以成為未來量子信息處理和量子網絡的有前途的固態量子發射器。在固態量子發射器中,量子點和金剛石中的氮空位(NV)中心是兩個成熟的系統。然而,在這兩個系統之間,NVs表現出超過1s的優良相干時間,但缺乏產生難以區分光子所需的零聲子線(ZPL)的有效發射,而量子點在發射特性方面顯示出很大的前景,但限制在10ns相干時間。這突出了使用固態量子發射器工作的典型挑戰:單光子產生發射器自旋相干時間zui近對金剛石部分SiV中的第四組空缺中心的調查顯示了滿足這一領域的希望結果。圖16:固態量子發射器結合其良好的自旋特性,錫基空位中心在納米結構中強而穩定 ...
的概念,利用單光子。光路用紅線標出。光學元件:BS -分束器,M -反射鏡,φ-長程總相位變化。取自Misiaszek-Schreyner, Marta. "Applications of single-photon technology." arxiv preprint arxiv:2205.10221(2022).實驗內容在本文中,通過將4.09-GHz的鎖模激光器的光通過80ps的延遲干涉儀(12.5-GHz自由光譜范圍)導入到非線性晶體中,以實現高速糾纏源。低抖動差分超導納米線單光子探測器(SNSPDs)可以使time-bin量子比特解析為80ps寬的bin。而波長 ...
要高度敏感(單光子計數能力),允許快速外部觸發,并具有亞納秒范圍內的時間分辨率。iccd符合這些要求。光學克爾門控,它的作用就像光譜儀入口狹縫前的一個光百葉窗,已經被幾個小組用來觸發CCD。這種設置需要空間,因此限制了系統的可移植性。Talmi制定了拉曼多通道和門控檢測的選擇指南。1993年,Tahara和Hamaguchi首先通過構造一個增強的基于ccd的條紋相機實現了高靈敏度和良好的時序分辨率。TG拉曼裝置中的條紋相機將樣品的背散射光引導到光電陰極上;當電子被光子擊中時,通過在陰極管(稱為條紋管)的陽極上的高速電壓坡道(用于正負直流偏置)來加速電子。電子束(條紋)的運動從負極側交換到正極側 ...
)或CMOS單光子雪崩二極管(SPAD)陣列上,它們也適用于TG RS, SPAD陣列具有更高的靈敏度,與門控ccd相比具有更好的時間分辨率,并且不需要過多的探測器冷卻。傳統拉曼光譜(RS)的致命弱點是樣品誘導熒光發射。這是一個競爭現象,發生在相對較弱的拉曼散射下,并且可以模糊整個拉曼光譜,使材料的識別或量化成為不可能。解決這一問題的有效方法是時間門控(TG),這是信號處理中常用的一種技術。熱重光譜的目的是測量特定時間段內的信號,從而實現對瞬態過程的監測。早在20世紀70年代,隨著科學家們在測量過程中尋找去除熒光背景信號的方法,TG就進入了RS領域。然而,TG拉曼直到zui近幾年才開始商業化。 ...
或 投遞簡歷至: hr@auniontech.com