調制器的基于衍射的相位校準摘要我們提出了一種簡單而穩健的方法來確定僅相位空間光調制器 (SLM) 的校準函數。所提出的方法基于將二元相位菲涅耳透鏡 (BPFL) 編碼到 SLM 上。在 BPFL 的主焦平面上,焦輻照度是由一個能夠測量強度相關信號的設備收集的,例如 CCD 相機、光電二J管、功率計等。根據理論模型,很容易從實驗數據的數值處理中提取所需的校準函數。缺少干涉式光學裝置以及使用較少的光學組件可以快速對齊設置,這實際上很少依賴于環境波動。此外,通常在基于衍射的方法中出現的零級效應會大大降低,因為測量僅在焦點附近進行,其中主要光貢獻來自 BPFL 處的衍射光。此外,由于該方法的簡單性,在 ...
行程強的一級衍射效應。其中聲光調制器AOM主要用來做光的調制,可以對光束進行數字調制也叫做開調制(TTL調制),模擬調制,或者混合調制。還可以對一些不方便功率調節的激光器進行功率調節。上圖是一個常見的聲光調制器,由兩部分組成,左邊是射頻驅動器,輸出超聲波信號,右邊是聲光調制器晶體。對于常見的數字調制(TTL)來說,我們只需要將聲光調制器正確連接,把我們所需要的調制信號通過SMB接口給到射頻驅動器,調整好晶體跟激光器的角度,就可以實現激光器的開關調制,聲光調制器在開關速率上遠高于普通的機械斬波器或者機械光閘,這是由于原理上的完全不同所導致的,普通的機械裝置最高的調制速率也就到幾千赫茲(KHZ量級 ...
鏡會受到光學衍射極限的限制,分辨率只能達到可見光波長的一半左右,也就是200-300nm。而新型冠狀病毒的直徑大小是100nm左右。為了能夠更精細地觀測到生物樣本,需要突破衍射極限的限制。進一步提升光學顯微系統的分辨率。使用純相位液晶空間光調制器(SLM)對光場進行調制,產生一個空心光束可以有辦法提升系統的橫向分辨率。不同于電子顯微鏡、近場光學顯微鏡的方法,這種遠場光學顯微技術能夠滿足生物活體樣品的觀測需要。同樣原理,高分辨率的液晶空間光調制器通過精細的相位調制可以產生多光阱,從而對微粒實時操控,由此發展了全息光鑷技術。美國Meadowlark Optics 公司專注于模擬尋址純相位空間光調制 ...
0線/毫米的衍射光柵和一個索尼ILX511線性硅CCD探測器組成。光譜儀的分辨率為~ 1 nm,在532 nm激發下,較大可達到的拉曼光譜分辨率在100 cm?1時為~35 cm?1,在3000cm?1時為~ 25 cm?1。光譜儀在工廠進行了預校準,軟件模塊內置了拉曼位移模式下的光譜記錄功能。另外,光譜儀也可以單獨校準,然而幾乎沒有什么不同。更多詳情請聯系昊量光電/歡迎直接聯系昊量光電關于昊量光電:上海昊量光電設備有限公司是光電產品專業代理商,產品包括各類激光器、光電調制器、光學測量設備、光學元件等,涉及應用涵蓋了材料加工、光通訊、生物醫療、科學研究、國防、量子光學、生物顯微、物聯傳感、激光 ...
中充當布拉格衍射光柵,使輸入到器件的激光束以適當的角度偏轉。根據AOM的配置,多達90%的入射功率可以分配到布拉格光柵的①級衍射。調制是通過改變使用的射頻信號來實現的。在AOM中,通過壓電換能器在材料中形成布拉格光柵。技術比較對于大多數應用,EOM和AOM之間的選擇是基于幾個關鍵的性能和成本考慮。由于AOM通常是一個成本較低的選擇,除非應用方面對EOM的關鍵優勢之一有重大需求,一般AOM都是不錯的選擇。與AOM相比,EOM具有更大的孔徑、更高的功率和脈沖能量兼容性、非常高的對比度和快速的上升時間。而AOM則可以提供更高的調制速度。下表中總結了一些重要的參數及其典型值。速度/上升時間調制器的時間 ...
跨越了以阿貝衍射極限為代表的一度難以逾越的分辨率障礙 ,開發多種成功的方法,如受激發射損耗(STED) 、單分子定位方法(PALM 和 STORM) ,結構照明顯微術(SIM)和超分辨率光學波動成像(SOFI),這要歸功于圖像傳感器技術的改進以及單分子光譜學的巨大進步。在這里,我們提出了一種新的顯微技術,它利用 SPAD23陣列探測器的較高時間分辨率來測量熒光波動引起的相關性。在 ISM 架構中測量的這種相關性,然后被用作具有高達 4倍增強橫向分辨率和增強軸向分辨率的超分辨率圖像的對比度。僅用幾毫秒的像素駐留時間就可以獲得高信噪比的超分辨率圖像。單光子探測器陣列SPAD23技術源于代爾夫特理工 ...
徑限制引起的衍射效應對近場束寬的影響;4.由于上述是對整個x,y平面積分,因此此積分是至少在捕獲光功率(能量)99%以上區域進行的,配合計算機的圖像處理系統可以快速的計算出光束束寬的大小。但此方法對高空間頻率的干擾非常敏感,因此在測量中會出現一定的基地噪聲,所以在測量的過程中要對噪聲做一定的處理。三、遠場發散角激光光束的傳播符合雙曲線定律,光束的遠場發散全角可表示為雙曲線兩條漸近線之間的夾角,光束遠場發散角θ定義為光束遠場發散全角的一半,通常表示為無窮遠處光束束寬和傳輸距離之比的J限。圖3 光束束腰和遠場發散角表示束腰直徑,表示束腰半徑,表示遠場發散全角,由激光光學可知,對基膜高斯光束有(表示 ...
的設備中,在衍射J限下的全光成像 被認為是無法實現的。圖(a)傳統全光成像(PI)設備的方案:物體的圖像聚焦在微透鏡陣列上,而每個微透鏡將主透鏡 的圖像聚焦在后面的像素上。這種配置需要與方向分辨率的增益成比例的空間分辨率的損失;(b)顯 示了相關全光成像(CPI)設置的方案,其中方向信息是通過將物體聚焦的傳感器檢索到的信號與收集 光源圖像的傳感器相關聯而獲得的。為了實現全光成像,我們正在尋求一個高性能的探測器,一個相關部分是通過用基于尖端技術的傳感器(如單光子雪崩 二J管(SPAD)陣列)取代商用高分辨率傳感器(如科學 CMOS 和 EMCCD 相機)來確定的。SPAD 基本上是一個光電二J管 ...
像系統形成的衍射圖樣中,光能主要集中在艾里斑中,而像差的存在使衍射光斑的能量比無像差時更為分散。屬于這一類的像質評價方法有斯特列爾判斷、瑞利判斷和分辨率。像差系統,通常用幾何光線的密集程度來表示,與此對應的評價方法有點列圖。1,斯特列爾判斷Strehl 強度比(斯特列爾比,Strehl ratio):當光學系統有像差時,衍射圖樣中中心亮斑(艾里斑)占有的光強度要比理想成像時有所下降,兩者的光強度比稱為Strehl 強度比,又稱中心點亮度,以 S.D.表示。Strehl判斷(Strehl criterion):中心點亮度(斯特列爾比)S.D.≥0.8時,系統是完善的。 斯特列爾提出的中心點亮度S ...
微透鏡陣列與衍射型微透鏡陣列兩類:折射型微透鏡(ROE)陣列:基于幾何光學的折射原理,光在兩種透明介質交界處(如空氣和玻璃),將向折射率高的區域彎折。材料的折射率越高,入射光發生折射的能力越強。通過這個原理,將一個完整的激光波前在空間上分成許多微小的部分,每一部分被相應的小透鏡聚焦在焦平面上,光斑進行重疊,從而實現在特定區域將光均勻化,對激光束精確整形。其應用主要有光斑整形和光束轉化。圖2:折射型微透鏡陣列衍射型微透鏡(DOE)陣列:基于物理光學的衍射原理,光被透鏡陣列的表面浮雕結構調制改變了波前相位,從而實現了光波的調制、變換。激光經過每個衍射單元后發生衍射,并在一定距離(通常為無窮遠或透鏡 ...
或 投遞簡歷至: hr@auniontech.com