一束激光可以分為兩部分,一部分是相位,另一部分是光斑光強分布,他們是相互關聯的,可以通過改變光束的相位部分,對光斑進行整形。上述GS算法就是其中的一種方法。主要分為四步1.假設入射光斑是均勻光強,相位因為是未知的,可以用一個隨機相位替代,或者通過Target Intensity的IFFT變化求得2.然后經過FFT變化后,得到的是焦距是的光斑分布,光強與Target Intensity比較近似,但是不夠理想3.替換上述步驟的光強分布,保留相位分布,得到新的一束激光4.經過IFFT變化后保留光斑的相位,作為下一次迭代的初始相位通過上述步驟的反復迭代,會不斷改善Approximation to ta ...
純相位空間光調制器在點擴散函數(PSF)工程中的應用一、引言2014年諾貝爾化學獎揭曉,美國及德國三位科學家Eric Betzig、Stefan W. Hell和William E. Moerner獲獎。獲獎理由是“研制出超分辨率熒光顯微鏡”,從此人們對點擴散函數(PSF) 工程的認識有了顯著提高。Moerner 展示了PSF 工程與Meadowlark Optics SLM 的使用案例,用于熒光發射器的超分辨率成像和3D 定位。PSF工程已被證明使顯微鏡能夠使用多種成像模式對樣本進行成像,同時以非機械方式在模式之間變化。這允許對具有弱折射率的結構進行成像,以及對相位結構進行定量測量。已證明的 ...
純相位空間光調制器在STED超分辨與全息光鑷中的應用一、引言由于普通光學顯微鏡會受到光學衍射極限的限制,分辨率只能達到可見光波長的一半左右,也就是200-300nm。而新型冠狀病毒的直徑大小是100nm左右。為了能夠更精細地觀測到生物樣本,需要突破衍射極限的限制。進一步提升光學顯微系統的分辨率。使用純相位液晶空間光調制器(SLM)對光場進行調制,產生一個空心光束可以有辦法提升系統的橫向分辨率。不同于電子顯微鏡、近場光學顯微鏡的方法,這種遠場光學顯微技術能夠滿足生物活體樣品的觀測需要。同樣原理,高分辨率的液晶空間光調制器通過精細的相位調制可以產生多光阱,從而對微粒實時操控,由此發展了全息光鑷技術 ...
菲涅耳透鏡的空間光調制器的基于衍射的相位校準摘要我們提出了一種簡單而穩健的方法來確定僅相位空間光調制器 (SLM) 的校準函數。所提出的方法基于將二元相位菲涅耳透鏡 (BPFL) 編碼到 SLM 上。在 BPFL 的主焦平面上,焦輻照度是由一個能夠測量強度相關信號的設備收集的,例如 CCD 相機、光電二J管、功率計等。根據理論模型,很容易從實驗數據的數值處理中提取所需的校準函數。缺少干涉式光學裝置以及使用較少的光學組件可以快速對齊設置,這實際上很少依賴于環境波動。此外,通常在基于衍射的方法中出現的零級效應會大大降低,因為測量僅在焦點附近進行,其中主要光貢獻來自 BPFL 處的衍射光。此外,由于 ...
液晶空間光調制器常用的校準測量方式不同的LCOS所能調制的范圍不同,因此在使用之前,需要對每個LCOS都進行調制性能的標定。主要測量方法有功率計探測法、馬赫—曾德干涉方法、徑向剪切干涉方法、泰曼格林干涉方法、雙孔干涉方法等。下面簡單介紹幾種。功率計直接探測法 圖1功率計直接探測法的原理圖如圖1所示,激光經準直擴束后照射在非偏振分束片上,其中透射光經LCOS調制后反射,反射光經反射鏡反射后作為參考光,與待測的 LCOS調制后的光發生干涉后被功率計接收,記錄光強的變化。測試方法非常簡單,但是由于照射光不是嚴格的平行光,干涉后的光強較難保證完全均勻,導致測量結果精度不高,而且得到的相位調制特性結果為 ...
純振幅液晶型空間光調制器FLCOSIf you can not measure it, you can not improve it。—Lord Kelvin隨著后摩爾時代的發展,半導體晶圓及各種零部件精益求精,電子產品向微型化和高集成方向發展,半導體晶圓外觀檢測、零部件外觀檢測技術也面臨新的挑戰,對于1微米及亞微米級的外觀檢測成為熱點話題,高分辨率的3D自動光學檢測市場已經在無聲中迅速崛起。高分辨率、高分辨率、高分辨率的3D自動光學檢測,同時離不開高性能的微型顯示器。昊量光電推出“Forth Dimension Displays”公司高像素分辨率2K(2048*2048)微型顯示器,專門為滿 ...
該方法是通過空間光調制器的液晶面控制反射光的相位分布,通過計算機向空間光調制器輸入一個螺旋相位分布的全息圖,形成具有螺旋相位分布的全息光柵,光束經過該面反射后即可生成渦旋光束。該方法與螺旋相位板法原理非常相似,只是實現方法不同,螺旋相位板的通過透射光程變化實現,空間光調制器是通過液晶反射控制相位,但都使光束被賦予螺旋相位。全息圖法也與前兩種相似,只是通過全息片使光束被賦予螺旋相位產生渦旋光束。利用螺旋相位板法產生渦旋光束能夠實現較高的效率轉換,并且能夠克服空間光調制器的缺點對高功率的激光束進行轉換。但一個螺旋相位板只能產生一個固定的拓撲荷的渦旋光束,而空間光調制器則更靈活,可根據需求調整。此外 ...
基于DMD的320nm以下紫外光應用可靠性研究介紹許多大學、研究中心和終端設備制造商已經發表了多篇關于使用DMD的無掩模光刻的論文。利用DMD的生產系統已經由多家原始設備制造商推出。 通常,這些工具選擇使用多個中到高分辨率DMD以實現高數據吞吐量,并在365-410nm范圍內工作。典型工作條件是在DMD上的3-5W / cm2 照明,溫度保持在30°C以下。 基于這些條件,制造商已經能夠將DMD系統穩定運行。設備在 UV-A 范圍內的 3.4W/cm2 、25°C條件下始終表現出超過 3000 小時的運行時間。生產合格的UV DMD中使用的標準UV窗口具有320-400nm的可用透射率區間。為 ...
們提出了基于空間光調制器的條紋結構光照明和散斑照明數字全息顯微技術。為了簡化數字全息顯微裝置的結構并提高其空間分辨率,Latychevskaia 等人提出了一種基于全息圖外推方法的無透鏡數字全息顯微技術。其它科學家將該方法成功應用于太赫茲同軸無透鏡數字全息顯微中。高兆琳、劉瑞樺等老師在研究基于數字微鏡陣列的高分辨率定量相位和超分辨熒光雙模式顯微技術時應用了這種技術。熒光顯微成像中,可獲取精細結構的信息,但熒光標記對實驗體有破壞(光毒性、光漂白等)。無透鏡數字全息顯微技術不直接作用于實驗體,有長時間無損檢測的可行性,與熒光顯微成像技術形成互補。以高老師、劉老師的研究工作為例,簡介結構光照明顯微技 ...
SLM!液晶空間光調制器(SLM)可以將數字化數據轉換為適合各種應用的相干光學信息,包括雙光子/三光子顯微成像、光鑷、自適應光學、湍流模擬、光計算、光遺傳學和散射介質成像等應用。 這些應用需要能夠輕松快速地改變相干光束波前的調制器。 通過將液晶材料的電光性能特征與基于硅的數字電路相結合,Meadowlark Optics 現在提供了高分辨率的 SLM,這些 SLM 還具有物理緊湊性和高光學效率。圖一:緊湊的HSP1K(1024×1024)系列和E19×12(1920×1200)系列SLMMeadowlark Optics 的硅基液晶 (LCoS) 空間光調制器 (SLM) 專為純相位應用而設計 ...
或 投遞簡歷至: hr@auniontech.com