展示全部
一階、二階和三階色散的自相關測量的示例。干涉測量自相關方法的優勢在于它們易于實現并且適用于優化大多數多光子成像應用的激發效率。然而,就其無法提取實際脈沖形狀和相位而言,使得它們從根本上受到限制,因此,通常假設高斯或雙曲正割 (sech) 整形函數。針對這種情況,已經開發出一系列與顯微鏡非常匹配的更復雜的脈沖測量技術;即頻率分辨光開關 (FROG) 和用于直接電場重建的光譜相位干涉測量法 (SPIDER) ,它們能夠提供額外的信息。此外,多光子脈沖內干涉相位掃描 (MIIPS)不僅可以測量脈沖,還可以對其進行整形。有許多論文詳細介紹了使用執行自相關作為衡量顯微鏡系統雙光子成像性能的效果。4.2a ...
?4分別稱為三階色散 (TOD) 和四階色散 (FOD)。對于通過色散介質傳播的脈沖,譜相位是光程(P) 的函數:方程(8)的色散項用P表示為:一個重要的補充表達式將 GDD 與脈沖持續時間聯系起來:如圖14 所示為每一階項的色散效應。偶數階色散項引起脈沖的對稱展寬,比?2高階的奇數階色散項引起脈沖扭曲變形。根據符號的不同,在脈沖的前邊緣或后緣邊添加一個振鈴(ring-like)特征。Wollenhaupt 等人提出了一個說明性的例子,其中列出了增加 GDD 量對不同時間長度脈沖的影響,具有 800 nm光源的典型多光子顯微鏡可能具有高達 4000fs2的 GDD。這個量的GDD 將導致160 ...
來自未補償的三階色散。對于更長的多周期脈沖(>25 fs),使用棱鏡或光柵壓縮器會引入適量的色散(圖2中的黃色區域)。壓縮器是放大的短脈沖激光器的組成部分,可以方便地用于執行d-scan。圖4(c)給出了使用光柵壓縮器作為色散元件的d-scan測量。結果是用Ti:Sapphire TW級激光器獲得的,工作頻率為10 Hz,在LLC驅動高強度阿秒脈沖光束線。壓縮器中的一個光柵安裝在一個電動平移臺上,該平臺在z佳壓縮點上連續移動。壓縮器的分散系數為4300fs2/mm GVD。總掃描色散窗為17200 fs2,反演脈沖持續時間為43.4 fs。4.單發d-scan到目前為止,我們已經討論了通 ...
或 投遞簡歷至: hr@auniontech.com