是一個相對于激發光波數的相對波數值,對于同一振動模式,發射光子與入射光子的能量差恒定,所以不同的激發波長下拉曼位移相同,最終獲得拉曼光譜也是一致的。那么在拉曼光譜儀中該如何選擇激發波長呢?我們從以下幾個方面進行考慮。從獲得拉曼信號強度方面進行考慮。在同等條件(如激光功率、光柵、采集時間等),拉曼光譜儀所獲得的拉曼信號強度與激發波長有如下關系:從上式可以看出,激發波長越短,拉曼信號越強 !從避開熒光干擾方面進行考慮。下圖展示了某一樣品在532nm、633nm、785nm三種波長下獲得的拉曼光譜以及該物質的熒光光譜。可以看到該樣品的熒光峰主要集中在580nm至785nm之間,假如使用532nm或者 ...
用于銫里德堡激發和電離;435nm和445nm用于工業應用;其他包括一些SHG系統不是很穩定的波長如657、689和698nm。如果您對此感興趣,請聯系我們。 ...
下三種:a 激發態吸收ESA激發態吸收是指同一個粒子從基態通過連續多光子吸收到達能量較高的激發態。首先,發光中心處于基態G上的離子吸收一個能量為φ1的光子,躍遷至中間亞穩態E1能級,若光子的振動能量恰好與E1能級及更高激發態能級E2的能量間隔匹配,那么E1能級上的該離子通過吸收光子能量而躍遷至E2能級,從而形成雙光子吸收,只要高能級上粒子數量夠多,形成粒子數反轉,那么就可以實現較高頻率的激光發射,出現上轉換發光。b 能量傳遞過程ETU能量傳遞是指通過非輻射過程將兩個能量相近的激發態離子A、B耦合,其中A把能量轉移給B回到基態,B接受能量而躍遷到更高的能態,從而使B能夠從更高的能級發射。c 光子 ...
的整個表面,激發強度約為100個太陽輻射,光譜分辨率為2nm.研究的樣品是CIGS基的微型太陽能電池,這些電池為圓形,直徑范圍為20um至150um。如上圖,利用高光譜設備探究了CIGS太陽能電池的PL成像圖,采集時間45min,并通過定量校準,結合廣義普朗克定律獲得了準費米能級分裂△μeff。為了說明橫向載流子傳輸的影響,將高光譜成像儀和共聚焦顯微成像結合(如上圖)得到了PL mapping成像圖,只要可以檢測到發光信號,就可以確定準費米能級分裂。 從激發中間的0.91 eV下降到0.75 eV。通過電接觸測得邊緣處的電壓為0.70eV,在空白區域中,由于PL信號過低,無法確定分裂。您可以通 ...
峰沒有很好地激發起來,像是淹沒在測量噪聲里。顯然這里沒有雙擊,但是我感覺測量結果很糟糕 — 并且大多數人會同意這不是一個很好的頻響測量結果。事實上,工程師試圖為這類糟糕測量結果進行辯護,聲稱這個結構很復雜,有很多螺栓,并且可能具有非線性行為。(我希望每次聽到這類說辭我可以得到一美元!非線性、螺栓和阻尼 — 啊,我的上帝啊!)。現在我們來考慮雙擊實際上是多次連擊的測量結果。現在很明顯這個測量結果在輸入力激勵上具有多次沖擊。輸入譜不平坦,在頻譜范圍內帶有某種程度的變化。整個頻譜上實際變化在20~25dB之間。當然,我同意我要避免此類特別的測量結果,但是實際上頻響測量結果和相干卻很好。頻響函數相當不 ...
可重復的單擊激發? 內部傳感器評估和過程控制? 自動搜索和調整沖擊力? 位置的變化是自動預測的? 通過附件配置脈沖特性? 通過遠程控制或集成到客戶系統中來觸發功能? 在德國設計和組裝? CE認證1.確保單次激發雙重撞擊激勵可以在時域和頻域檢測到2.豐富的配件支持不同的傳感器-尖端-配重的組合。綜述上文介紹WaveHitMAX - 一款用于全自動沖擊測試的智能脈沖錘,在全新的AI智能脈沖領域實現真正意義上的全自動智能脈沖錘!如果您對WaveHitMAX-全自動沖擊測試的智能脈沖錘有興趣,請訪問上海昊量光電的官方網頁:http://www.champaign.com.cn/details-1495. ...
或 投遞簡歷至: hr@auniontech.com