信號光子λs激發泵浦光子λp,發射一個波長為λs的信號光子和一個波長為λi的限制光子。Λi=(1/λp-1/λs)-1。在差頻過程中,兩個信號光子和一個閑置光子出射,產生放大的信號光場。這被稱為光參量放大。將非線性晶體放入一個光學諧振腔內可明顯地提高效率,這就是光學參量振蕩器(OPO)。相位匹配是指在兩個或更多頻率的光通過晶體傳播時固定這些光之間的相對相位。折射率隨光的頻率而變,因此,隨著光子在材料中傳播,兩個不同折射率的光子之間的相位關系將改變。除非晶體對這些頻率進行了相位匹配。為了輸入光子進行有效的非線性轉換,需要在整個晶體中保持輸入光子和輸出光子之間的相位關系。如果相位不能匹配,產生光子 ...
(低能級)向激發態(高能級)躍遷時,需要從外界吸收一個光子;而當原子由激發態向基態躍遷時,則需要向外界釋放一個光子。一個光子的能量:當我們用一個入射光子掠過原子時,就有一定幾率使該原子由激發態向基態躍遷,從而釋放出一個光子,最終,我們將得到兩個光子(入射光子和受激輻射所產生的光子)。并且,原子受激輻射所產生的光子與原入射光的光子是性質全同的,即能量(頻率)、偏振、相位都相同。這就是受激輻射的光放大現象,也是激光產生的底層機制。那么,只要我們讓足夠多的原子受激輻射(從激發態向基態躍遷),不就可以將原入射光放大,從而產生激光了么?雖然原理上是這樣,但要產生激光卻并沒有那么簡單,因為原子除了有受激輻 ...
用是發射能夠激發成像區域的射頻脈沖。當我們加入的射頻脈沖的頻率和質子進動頻率一致時,就會發生能量的傳遞,低能的質子獲得能量進入高能的狀態,這便是核磁共振。加入了射頻脈沖之后,產生的第1個影響是能量的傳遞,獲得能量的質子會從低能級(磁場方向指向上)躍遷至高能狀態(磁場方向指向下),縱向磁場強度隨之不斷減小。第二個影響是由于頻率一致,所有吸收能量的質子會相互吸引靠攏,產生相同的相位,橫向磁場強度隨之不斷增大。四.“成像”那么,射頻脈沖關閉后發生了什么呢?當射頻脈沖消失后,這些共振的H原子會慢慢恢復到原來的方向和幅度,這個過程稱之為“弛豫”。弛豫分為橫向弛豫和縱向弛豫。橫向弛豫也稱T2弛豫,即橫向磁 ...
特定波長的光激發,并以不同的波長再次反射吸收的光。熒光顯微鏡的應用 熒光顯微鏡可以進行形態學研究、納米范圍內的測量值分析以及實時可見的大多數不同文化的過程。無論是在生物化學、生物物理學還是醫學領域:快速、詳細地檢測明亮、多彩的熒光有助于熒光顯微鏡的測量過程,并為新發現奠定基礎。好的測量結果和分辨率需要精確的光學器件——無論是通過光束路徑的優化和聚焦、精確安裝的濾光片還是高質量的鍍膜。熒光顯微鏡的結構和功能原理 允許個別波長通過的特殊濾光片可確保熒光顯微鏡下熒光的可視化。熒光顯微鏡的特殊濾光片包括:勵磁濾波器發射過濾器二向色分束器單獨的激發濾光片允許相應波長的光通過,這是激發待檢樣品中特定染料所 ...
顯微鏡通過對激發光進行空間限制來提供三維空間信息。因此,與寬場顯微鏡相比,共聚焦顯微鏡需要更高的初始光強。因此,在共聚焦顯微鏡的應用中,激光光源通常比LED更受青睞。超分辨率顯微鏡提供20 - 200nm范圍內的空間分辨率,超出了寬視場熒光顯微鏡(~ 200nm)的限制。與共聚焦顯微鏡一樣,需要空間受限的激發光,通常shou選激光光源。透射光學顯微鏡通常需要比熒光顯微鏡更低的光強,因此可以使用更小的被動冷卻光源。多年來占主導地位的鹵鎢燈已經被固態顯微鏡光源所取代。很大程度上是相同的原因,固態顯微鏡光源在寬視場熒光顯微鏡也已經取代了汞弧燈。特別是,固態光源的光譜分布(色溫)不隨輸出光強而變化,這 ...
供相對于探針激發特性的光譜進行優化,并提供足夠的光強可以從弱雜交信號中產生熒光。此外,常規細胞遺傳學分析的樣品處理量需要穩定、可靠和免維護的光源。為了滿足這些要求,Lumencor高性能光引擎提供了zui好的現代固態照明技術。常用產品型號 CELESTA、SOLA、AURA、SPECTRA診斷測試 Diagnostic Testing由Lumencor固態光源驅動的熒光檢測用于許多診斷測試應用,包括循環腫瘤細胞(CTC)檢測,免疫熒光和熒光原位雜交(FISH)分析。此外,基因表達分析正逐漸從一種研究技術發展為診斷測試的平臺技術。與其他應用領域一樣,為熒光檢測提供優化的顯微鏡照明需要詳細關注光的 ...
處于一個特定激發態的原子系統時,這種情況的發生是有可能的。一個非平衡的環境一般不能由增加系統溫度來實現和維持。因此,光放大的第二個條件是持續的泵浦能量來產生和維持優勢的粒子數反轉來,從而產生受激輻射。大多數的激光材料只有很低的增益,為了產生一個很大的放大,光必須經過一個很長的激光介質,這個過程可以通過在兩個鏡子之間放置一個增益介質來實現,鏡子來回反射光線通過增益介質。增益介質和兩個鏡子組成激光諧振腔。影響激光的主要因素是增益介質、泵浦,以及激光腔或者諧振。激光器材料和高能量輸出也需要一個冷卻系統。(2)激光模式FP腔的穩定性由鏡面的曲率半徑和鏡間距離決定。作為一個穩定的腔體,曲率半徑應該是鏡體 ...
夠以不同射頻激發熒光。在兩束移頻激光之間干涉所產生的拍頻處,數字合成的射頻“標記”了熒光發射的各個像素點。這和無線通信系統中的頻率多路復用類似,FIRE圖像的一行內的每個像素點都被分配了自己的射頻。單元光電探測器同時檢測多個像素的熒光,并從探測器輸出的頻率分量中重新構建圖像(運用數字域的并行鎖相放大來分辨)。樣品中每個點能以不同的射頻來激發熒光的秘訣在于其中的馬赫-曾德爾干涉儀(MZI),并使用聲光器件來執行拍頻激發多路復用。如上圖a所示,MZI一路的光通過聲光偏轉器(AODF)產生頻移(帶寬為100MHz),由射頻頻率梳驅動,相位經過設計以zui小化峰值-平均功率比。AODF產生多個偏轉光( ...
線偏振光)來激發由電極電位控制的電極表面,然后測定出散射得到的光譜信號,如頻率、強度及偏振性能變化與電極的電位或者電流強度的變化關系。在位傅里葉紅外光譜儀法(FTIRS)是由Bewick等人在20世紀80年代早期首創的。在位傅里葉變換紅外光譜儀可以獲取電極上中性和離子吸附物的分子信息,以及參與電化學反應的溶液種類。大量的研究已將在位FTIRS由光滑的表面向粗糙的表面擴展,由靜態條件向動態條件擴展,由水相系統向非水相系統擴展。利用在位FTIRS技術可以得到的電化學雙分子層等圖像信息,達到對電催化反應以及帶電界面過程更深刻的理解。圖1-11兩種在位FTIRS電池設計圖兩種在位FTIRS電池設計方法 ...
波長的入射光激發。LSPR導致了特征消光(吸收加散射)波段,可能跨越紫外、可見和近紅外部分的能譜。圖1-16金屬納米粒子在半導體點和分子橋之間的電子轉移的圖示因此在電化學沉積過程可能也會存在襯底與沉積物質的電荷轉移現象。這些界面效應將會給橢偏測試數據的分析與提取增加難度。了解更多橢偏儀詳情,請訪問上海昊量光電的官方網頁:http://www.champaign.com.cn/three-level-56.html更多詳情請聯系昊量光電/歡迎直接聯系昊量光電關于昊量光電:上海昊量光電設備有限公司是光電產品專業代理商,產品包括各類激光器、光電調制器、光學測量設備、光學元件等,涉及應用涵蓋了材料加工、 ...
或 投遞簡歷至: hr@auniontech.com