。捕獲粒子的拉曼散射信號通過二向色鏡從激光中分離出來,經過透鏡和多縫陣列后,直接進入光譜儀。圖2采用1340 × 100像素的多通道CCD 對所有捕獲粒子的拉曼光譜進行檢測。圖2為CCD相機捕獲的拉曼信號。通過調節兩排激光聚焦陣列之間的間隔距離,可以很好地分離兩排拉曼信號,沒有串擾。然而,每一行有三個拉曼信號顯示了重疊和疊加,這是不可避免的。為了分解每一行疊加的光譜并檢索單個光譜,可使用調制多焦檢測技術進行光譜采集和重建。圖3調制多焦檢測的第一種方法是激勵多焦陣列的調制,如照明調制。一條線上使用三個激光焦點(圖3(a))捕獲兩個3 μm聚苯乙烯珠(圖3(b))。當三個激光聚焦都處于“開”狀態時 ...
彈性散射,即拉曼散射是一種非常弱的效應。拉曼效應的光學發射“截面”很小。然而使用光學工程方法可以有效地處理小的截面。許多光學系統會有微量的光泄漏,而且幾乎所有的系統/材料都會自動熒光。需要有方法來處理這些影響。拉曼效應的一個具有挑戰性的方面是光譜儀或分析工具本身的波長/頻率分析部分。許多用于拉曼應用的光譜儀具有非常大的物理尺寸。光譜儀分析段的尺寸非常重要,整個拉曼系統理想地適合在一個小的區域內,并具有足夠的信號處理能力來分析光譜。拉曼光譜和自熒光測量是研究臨床和生化樣品的重要方法。自熒光強度和拉曼強度/效率以及由此產生的光譜特性可能取決于許多因素,包括材料的化學組成、材料環境,還可能取決于材料 ...
調制檢測到的拉曼散射,但與基于鏡像的SLM設備相比,光學吞吐量通常較低,而且激光光子通常比拉曼光子更容易獲得。此外,相位控制對相干單色激光的影響提供了可以利用的附加效應,如用于多路復用光束轉向的全息相位圖。更多詳情請聯系昊量光電/歡迎直接聯系昊量光電關于昊量光電:上海昊量光電設備有限公司是光電產品專業代理商,產品包括各類激光器、光電調制器、光學測量設備、光學元件等,涉及應用涵蓋了材料加工、光通訊、生物醫療、科學研究、國防、量子光學、生物顯微、物聯傳感、激光制造等;可為客戶提供完整的設備安裝,培訓,硬件開發,軟件開發,系統集成等服務。您可以通過我們昊量光電的官方網站www.auniontech. ...
表面位置收集拉曼散射信號來檢索分層次地表信息的技術。圖1由于β-激動劑在豬肉樣品中的分布不均勻,當只檢測肉的表面時,可能會出現漏檢的情況。如圖1所示,偏移譜對來自地表和次地表的拉曼信號表現出不同的靈敏度。隨著源探測距離的增加,深層拉曼信號的貢獻逐漸超過表層拉曼信號的貢獻。因此,β-激動劑可以在豬肉的更深層次檢測,使檢測更加準確。空間偏移拉曼光譜是在距離光照點空間偏移的一系列點沿樣品表面采集拉曼信號,可從擴散散射介質中提取亞表面拉曼信息。增加空間偏移增加了來自更深層的信號貢獻,使其逐漸超過來自頂部表面材料的信號,從而增強了更深層的信號,同時衰減了表面信號。隨著偏移距離的增加,光譜變化的模式允許從 ...
的真偽與自發拉曼散射相比,CRS技術可以產生更強的振動敏感信號。CRS技術在光學顯微鏡中的普及與這些大大提高的信號水平密切相關,這使CRS顯微鏡的快速掃描能力成為可能。然而,除了更強的振動信號之外,相干拉曼相互作用還提供了豐富的探測機制,用于檢查各種各樣的分子特性。一般來說,CRS技術比自發拉曼技術對介質的拉曼響應提供了更詳細的控制。所以在實際搭建相干拉曼系統時,會有諸多問題。當第①次構建CARS或SRS顯微鏡時,很難確定PMT或鎖相放大器探測器上觀察到的信號的來源。然而,可以使用一個簡短的檢查表來驗證信號的身份。通常情況下,應使用強諧振樣品(例如,兩個蓋卡片之間的一層薄十二烷),并對樣品施加 ...
相干拉曼技術雙束光同步的粗調與細調方法對于相干拉曼技術,兩束激光必須在時間和空間上結合。常用的方法是使用二向色鏡和幾個轉向鏡進行精細調整,在空間上重疊光束相對簡單。通常情況下,在組合光束路徑中間隔約1米的兩個光闌處的重疊可用于驗證空間對準。可根據CARS或SRS信號強度進行微調。基于opo的系統中的時間重疊是通過基于反向反射器的被動延遲階段來實現的,該延遲階段允許在保持空間對齊的同時調整兩個光束中的一個的路徑長度(圖1)。由于使用的激光系統的重復頻率通常是80 MHz,兩個脈沖之間的時間周期是p = 1/f = 12.5 ns。用這個周期乘以光速,得到距離約為3.75 m。因此,為了找到時間重 ...
相干拉曼技術中常用的掃描方案掃描有兩種常用的方法:樣品掃描和光束掃描。樣品掃描提供了一個簡單的設備,但通常較低的速度和較小的視野,而光束掃描更復雜的實現,對光學系統的性能要求更高,但提供了更大的視野和更高的成像速度。在樣品掃描中,整個相干拉曼光學設置是固定的,樣品相對于焦點平移。這意味著光學系統可以對準一個固定的激光束,這比在一系列可能的激光束位置上對準系統更容易。為了獲得高的空間分辨率,需要一個平移階段具有較高的精度和重復性要求。通常,采用壓電驅動的彎曲級。這些階段提供的步長和重復性遠遠超過光學顯微鏡(通常小于5 nm)和較大數百微米的平移所要求的。這種制度主要有兩個缺點:一是圖像的較大視場 ...
單頻CARS與SRS顯微系統單頻CARS/SRS顯微鏡較具挑戰性的部分是激發源,它必須產生兩個同步的激光脈沖---泵浦和斯托克斯,需具有以下幾點特征:1. 頻率失諧在500和之間連續變化,以覆蓋所有相關的振動躍遷。這意味著至少有一個泵浦/斯托克斯脈沖是廣泛可調的。例如,假設一個固定的泵浦波長為800納米,斯托克斯必須在835和1110 nm。2.脈沖持續時間為1 - 2 ps,對應于變換限制脈沖的帶寬為以這種方式匹配壓縮相中振動躍遷的典型線寬。這種選擇優化了峰值功率和光譜分辨率之間的權衡。較佳脈沖持續時間也可以取決于實驗條件,因為已經表明,在某些情況下,響應是一個與時間相關的函數,因此信號可以 ...
著提高。共振拉曼散射原理可應用到CRS系統的光激發中,達到相應提高分子濃度的檢出限的作用。這一方法要求發色團表現出與電子共振良好耦合的振動模式。如受激拉曼散射系統(SRS)所示,當激發頻率在電子躍遷附近調諧時,為熒光標記目的開發的熒光團顯示高達倍的振動響應的出色增強。結果是這種熒光探針可以通過CRS工藝在亞微米濃度下檢測到。這是重要的,因為它開辟了在多標簽樣品中映射不同探針的可能性,不同探針的數量受限于拉曼線的帶寬,而不是熒光的帶寬。由于檢測通道之間的串擾,在熒光顯微鏡中使用四個以上探針標記樣品具有挑戰性,而在共振增強SRS成像中,多探針標記可以擴展到數十個不同的探針。就多重成像而言,這種能力 ...
干反斯托克斯拉曼散射(CARS)顯微鏡。人們希望CRS顯微鏡技術能夠擴展到生物成像的其他領域,并且該技術能夠作為生物研究的常規工具占有一席之地。盡管令人印象深刻的研究表明,CRS可以映射脂類以外的各種生物化學化合物,但該方法并沒有輕易擺脫其作為一種研究方法的聲譽快速成像工具。由于許多儀器只存在于大型光學開發實驗室中,因此缺乏廣泛的應用。完整設備的高成本、復雜性和有限的供應商基礎無疑導致了CRS的使用規模過小,但人們對技術開發的強烈關注也超過了應用。也許很能說明問題的是,奧林巴斯在推出CRS顯微鏡幾年后就放棄了生產。在尋找下一波成功的過程中,對CRS成像的局限性進行一定的反思是不可避免的。常見的 ...
或 投遞簡歷至: hr@auniontech.com