闌,底片框為視場光闌。為保證軸外光束的像質,可變光闌的實際位置大致設在攝影物鏡的某個空氣間隔中。孔徑光闌的形狀一般為圓形,而視場光闌的形狀為圓形或矩形等。攝影物鏡的光學成像特性攝影物鏡的光學成像特性主要由三個參數決定,即焦距 f' 、相對孔徑 D/f' 和視場角 2ω。焦距 f'物鏡的焦距決定了物體在接收器上成像的大小。用不同焦距的物鏡對同一位置物體進行成像時,焦距越大,所得的像也越大。為滿足各種成像要求,物鏡焦距值相差很大,短的只有幾毫米,長的達數十米。變焦鏡頭,當其焦距改變時,可以獲得不同放大倍率的像。相對孔徑 D/f'物鏡人瞳的直徑與其焦距之比稱為物鏡的相 ...
處的分劃板是視場光闌,目鏡往往是漸暈光闌,其大小影響軸外點成像的漸暈系數。若圖像接收器不是人眼,而是光電器件(如 CCD 及 CMOS 器件等),則可將它置于實像平面 A'B' 處。望遠系統的視覺放大率 Γ 定義為:物體經過望遠系統所成的像對人眼張角的正切 ,與人眼直接觀察物體時物體對人眼張角的正切 之比。2. 望遠物鏡的光學成像特性望遠物鏡的光學參數由焦距 f′、相對孔徑 D/f′ 和視場角2ω。來表示。這些參數決定了望遠系統的分辨率、像面照度、成像質量和結構尺寸。因此,根據使用要求,正確確定參數并合理選擇物鏡是十分重要的。(1) 物鏡的分辨率 ψ望遠物鏡的分辨率用極限分辨角 ...
處的分劃板是視場光闌,目鏡住往是海暈光闌,其大小影響軸外點成像的漸暈系數。而對于測量用顯微系統,孔徑光闌沒在物鏡的像方焦平面上,以形成物方遠心光路,提高測量精度。若接收器不是人眼,而是光電成像器件(如 CCD 及 CMOS 器件),則可將它置于實像平面 A'B' 處。顯微物鏡的成像特性影響系統成像特性的主要是顯微物鏡。顯微物鏡較為重要的光學參數是數值孔徑和倍率,它影響系統的分辨率、像面照度和成像質量。數值孔徑定義為顯微物鏡物方介質的折射率 n 和物方孔徑角正弦之乘積,用符號 NA來表示,即(1) 顯微物鏡的分辨率δ顯微物鏡的分辨率是以它能夠分辨開兩點的較小距離δ來表示的,計算公 ...
方焦面上設置視場光闌,它到目鏡第①面的距離稱目鏡的工作距離,不能太短。尤其在測量用顯微鏡中,此距離應保證近視眼觀察時不能因目鏡調焦而碰到分劃板。由于物鏡的高倍放大,目鏡只承擔很小的光束孔徑角,但視場相對較大,因此顯微鏡目鏡屬短焦距的小孔徑大視場系統,設計時首先應考慮軸外像差,主要是倍率色差、彗差和像散的校正。一、惠更斯目鏡惠更斯目鏡是觀察用生物品微鏡中普遍應用的目鏡,由二塊平面朝向眼睛的平凸透鏡相隔一定距離組成,如下圖1所示。朝向物鏡的那塊透鏡叫場鏡,朝向眼睛的那塊透鏡叫接目鏡。場鏡的作用是使由物鏡射來的軸外光束折向接目鏡,以減小接目鏡的口徑,也有利于軸外像差的校正。圖1通常惠更斯目鏡的二塊透 ...
和縫掃描、寬視場輕片顯微鏡成像和多焦成像。這些方法通常達到比點掃描成像快20倍的采集速度,即使它們對活細胞成像不夠快,但它們構成了拉曼光譜許多其他應用的合適替代品。在第②種策略中,通過使用不同的拉曼模式來增加拉曼信號的強度,這反過來允許更短的捕獲時間。在腦生理病理研究中,與自發拉曼相比,常用三種模式來提高信號強度:非線性拉曼散射技術,如受激拉曼散射(SRS)和相干反斯托克斯拉曼散射(CARS),以及表面增強拉曼散射(SERS)。圖1在拉曼散射的非線性模式中,使用多個激光刺激特定的振動躍遷,從而增加信號的強度。簡單地說,在SRS中,樣品用自發拉曼中的“泵浦”激光照射,并結合較低頻率的“斯托克斯” ...
分割效果。寬視場照明和成像檢測窄帶濾波器可用于拉曼成像。第①個成功的現代儀器采用了干涉濾波器,它可以傾斜以改變通帶。隨后,聲光可調諧濾波器(AOTF)和液晶可調諧濾波器(LCTF)被引入到拉曼成像中,并提供了電子可調諧性。可調濾波器方法已被證明是測量隔離波段較有用的方法。如果只需要幾個幀來定義波段,拉曼成像可以相當快。當有許多重疊波段或非線性背景時,許多圖像必須以不同的拉曼位移拍攝,時間優勢就消失了。需要注意的是,聲光濾波器的透射率僅為50%左右,而液晶濾波器的透射率約為20 - 40%。相比之下,電介質濾光片通過80-90%的入射光。這種差異是因為AOTF和LCTF都作用于線偏振光。在大多數 ...
畸變系統的一般像差理論(一)-費馬原理和漢密爾頓的特征函數我們將像差函數寫成冪級數展開形式,并表明在一個畸變系統中有16種主要的像差類型。我們還將證明畸變主波誤差和光線誤差之間的聯系。本次主要介紹介紹費馬原理和漢密爾頓的特征函數。費馬原理是幾何光學的基本定律之一,它指出:光線從點P傳播到點P '必須穿過一條光程長度,該光程長度相對于路徑的變化是靜止的。根據費馬原理,我們可以得出一個重要的結論:對于光學系統中任意兩個非共軛點P和P ',都有且只有一條光線通過這兩點。如果P和P '是共軛點,這個結論是無效的,因為所有穿過共軛點的光線都具有相同的光程長度。這一結論的理論重要性 ...
像系統的清晰視場為所成像中的一條線,根 據透鏡焦距和成像傾角可以計算出成像變形量。通過二級成像原理彌補一級成像的缺陷,利用一級成像在空間上呈現樣品實像,然后通過二級成像,在相機的感光芯片上成像。橢偏成像是相機經過光電轉換,再進行A/D轉換后形成的,圖像傳感器 中的電信號與接收的光強成正比,因此可以從采集的圖像中獲取樣品的表面形貌和厚度分布。分析橢偏圖像時要求原始成像圖具有較好的成像質量,因此可以采用連續抓取時間積分法來提高圖像的信噪比,以此改善圖像的質量。通過采用多樣點平均法來降低隨機噪聲對圖像定量分析的影響,提高可靠性。如果您對橢偏儀有興趣,請訪問上海昊量光電的官方網頁:https://ww ...
望遠鏡物鏡的視場較小,例如大地測量儀器中的望遠鏡,視場僅 1~2度;天文望遠鏡的視場則是以分計的;而一般低倍率的觀察用望遠鏡,視場也只在10 度以下。但物鏡的焦距和相對孔徑相對較大,這是為保證分辨率和主觀亮度所必需的,可認為是長焦距、小視場中等孔徑系統。因此,望遠鏡物鏡只需對軸上點校正色差、球差和對近軸點校正彗差,軸外像差可不予考慮,其結構相對比較簡單,一般有折射式望遠鏡物鏡、反射式望遠鏡物鏡、折反射式望遠鏡物鏡,這篇文章主要介紹折射式望遠鏡物鏡。這類物鏡要達到上述像質要求并無困難,但要求高質量時,要同時校正二級光譜和色球差就相當不易。后者常只能以不同程度地減小相對孔徑才能實現。這類物鏡常用的 ...
需承擔較大的視場,對軸外像差不利,難以達到預期的像質。而負一倍雙組轉像系統一般采用二個相同且對稱設置的雙膠合鏡組,并在二鏡組的中間位置放置光闌,如下圖3所示,使鏡筒長度增加了。在共軛距取定后,鏡組的焦距和間隔的選擇與像質有關。間隔大對校正像散有利,但會導致軸外光束漸暈的增加。一般不應使漸暈大于 50%。圖3需要注意,如果只是簡單地加入透鏡轉像系統,則軸外點成像光束在轉像鏡組上的入射高度將大為增加,以致視場較大時,絕大部分光線不能通過轉像系統。為此,可在中間實像平面上加一適當光焦度的透鏡,使望遠鏡的光瞳與轉像系統的光疃共軛,使軸外光束折向轉像鏡組,如下圖4所示。這種加于中間像面上或其附近的透鏡稱 ...
或 投遞簡歷至: hr@auniontech.com