由一系列校正像差的折射光學元件組成笨重的鏡頭,是為相機尺寸的下限。還有一個基本的障礙在于鏡頭焦距難以縮短,因為這會引入更大的色差。基于計算設計的超表面光學(meta-optics)是成像器小型化的可行手段之一。超薄的meta-optics使用亞波長級納米天線(nano-antennas),以比傳統的衍射光學元件(DOE)更大的設計自由度和空間帶寬積來調制入射光。此外,meta-optical散射體豐富的模態特性使得其比DOE具有更多的能力,如偏振、頻率、角度多路復用等。meta-optics可以使用廣泛可用的集成電路代工技術制造(如深紫外光刻(DUV)),而無需基于聚合物的DOE或二元光學器件 ...
,不考慮離軸像差,用平面波看作為一個無窮遠處的點光源,其經過光學元件的相位調制后,用波動光學理論在自由空間傳播到圖像傳感器表面得到的光強作為點擴散函數。只考慮點擴散函數為平移不變的情況,這樣可以簡化問題。圖像源與點擴散函數卷積,在圖像傳感器每個像素上隨波長和時間積分,加上傳感器的讀取噪聲,zui終成像。圖像重建可以看作為求解一個Tikhonov正則化zui小二乘問題。(2) 端到端優化框架。用隨機梯度法優化有一個光學元件的計算相機。將成像模型的每一步描述為一個可微的模塊。光學元件的光學高度分布h是一個優化變量,光學元件的尺寸、圖像傳感器像元尺寸、傳輸距離z和圖像傳感器讀取噪聲水平等,均為超參數 ...
地聚焦誘導、像差校正能力等因素。全息近眼顯示能夠解決上述多種問題,并且可以唯一的使用單個空間光調制器(spatial light modulator,SLM)和相干光源,合成三維強度分布。盡管全息的基本原理已經在70多年前就已經被提了出來,但是高質量的全息圖獲取在21世紀初才實現。使用SLM生成高質量的數字全息圖的主要挑戰在于計算生成全息(computer generated holography,CGH)的算法。傳統的CGH算法依賴于不足以準確描述近眼顯示物理光學的波傳播模型,因此嚴重限制了能夠獲得的圖像質量。直到最近(2018年開始),基于機器學習的全息波傳播模型提出,能夠相對的改善圖像質 ...
致嚴重的光學像差,從而降低圖像分辨率和信噪比(SNR)。強光劑量會干擾正常的細胞行為和細胞器功能,導致活體成像的光子劑量有限,即信噪比低,時間分辨率也會下降。為了解決組織長時間高時空分辨率監測非常困難的問題,研究人員開發出了各種各種的技術手段。過去的十年中,亞細胞活體顯微鏡有了大幅的發展,例如轉盤共聚焦顯微鏡、自適應光學(AO)、高速雙光子顯微鏡和光片顯微鏡(LSM),它們與新的動物模型一起促進了神經科學、發育生物學、免疫學和癌癥生物學領域的各種研究。然而,在分辨率、速度、SNR和樣本健康之間存在難以躲避的矛盾,這在實時熒光成像中被稱為“挫折金字塔(pyramid of frustration ...
的大器件完成像差校準,利用衍射光學元件(DOE)、相干光纖束、神經網絡的結合,實現直徑小于0.5mm,分辨率約1um的超細內窺鏡。(1)利用CFB的記憶效應,使用靜態的DOE(雙光子聚合光刻(2-photon polymerization lithography)制造)替代SLM的動態調制來補償畸變。(2)DOE的隨機pattern將三維物體的信息編碼成二維的散斑pattern,沿著超細的CFB傳輸。基于U-Net的神經網絡對散斑pattern解碼,完成三維重建。a、DOE-Diffuser內窺鏡的方案和原理。遠端的diffuser將三維目標信息編碼為二維散斑圖案,該圖案通過CFB傳輸到近端, ...
《幾何光學 像差 光學設計》(第三版)——李曉彤 岑兆豐您可以通過我們昊量光電的官方網站www.champaign.com.cn了解更多的產品信息,或直接來電咨詢4006-888-532,我們將竭誠為您服務。 ...
PSF形狀的像差的敏感性,并以這種方式對精度和準確性產生負面影響。為了實現精確到Cramér-Rao下限(CRLB),即無偏估計器的精度,光學系統的像差水平應該被控制在衍射極限(0.072λ均方根波前像差),這個條件在實踐中往往無法滿足。因此,需要使用可變形鏡或為產生工程PSF而存在的SLM對像差進行校正。自適應光學元件的控制參數可以使用基于圖像的指標或通過測量待校正的像差來設置。后者可以通過基于引入相位多樣性的相位檢索算法來完成,通常采用通焦珠掃描的形式。這已經在高數值孔徑顯微鏡系統、定位顯微鏡中實現,并用于提高STED激光聚焦的質量。三、PSF應用對液晶空間光調制器的要求1.光利用率對于這 ...
RWE、波前像差、MTF、PSF 等等。一、Kaleo Kit的選型只需要3個步驟1.選擇您的波前傳感器2.選擇您的R-cube,波長(nm)3654055306257407808108509401050155039003.調整光束(擴束或者聚焦)二、Kaleo Kit的多重優勢多用途? 適用波段從紫外到紅外。? 各模塊能兼容或者獨立使用。? 可用于所有的測量條件: 有限遠-有限遠, 無限遠-有限遠...? 同樣的模塊適用于多種配置。強大的獨特技術? 高分辨率。? 可用于大的像差測量。? 消色差,對應所有波段消色差。? 納米級別測量精度。易用的? 緊湊的。? 易于準直的。? 能快速獲取分析結果 ...
工作時,球面像差Z小。4、快速且可靠(油浸系統)VAHEAT可以讓你控制視野內的溫度,獨立于顯微鏡物鏡的類型或物鏡的溫度。該系統被設計為獨立的單元,不需要對光學設置(如物鏡加熱器)進行任何額外的修改,以避免在您的視野中出現溫度下降。此外,我們的智能基板的特定設計確保了目標的性能即使在更高的溫度下也不會改變。5、4種加熱模式VAHEAT設有四種加熱模式,可根據您的需要進行不同的實驗。模式快速加熱,自動補償加熱,或定義良好的溫度剖面是可用的。6、機械穩定性和設備兼容性沒有熱漂移或振動,即使在高溫下也允許精確的單分子定位。VAHEAT與所有商業顯微鏡兼容。不需要進一步修改您的設置。它的快速熱響應允許 ...
,以盡量減少像差。在這里,棱鏡的角啁啾不能通過對其輸出面進行成像來消除,但通過將SHG晶體直接放在棱鏡之后并盡可能靠近棱鏡,可以將其影響降到z低。由于光束在通過棱鏡的過程中受到聚焦,因此應注意避免棱鏡中的非線性效應。zui后,所有討論的實現的共同點是需要一個足夠均勻的光束輪廓-光束上顯著的強度變化會降低測量的精度。在實際操作中,可以在設置之前使用放大鏡和光圈來選擇光束輪廓的中心部分進行測量。對于長脈沖的表征,上面討論的方法不再實用,因為在單個棱鏡中可以實現的相當大的光束尺寸的色散變化量(例如玻璃插入窗口)被限制在幾百fs2的GDD。圖5(c)描述了一種優雅的替代方案,它也非常適合于更長的脈沖。 ...
或 投遞簡歷至: hr@auniontech.com