像&熒光成像Phasics提供一種新的定量相位成像技術,不需要標記的情況下可以觀察到活細胞,并且準確的對細胞遷移,生長過程做統計分析。這種即插即用的相機依賴于一種橫向剪切干涉的專利技術,它可以直接測量穿過細胞的光束相位。這種技術的優勢在于極大的增強了觀察細胞是的對比度。而且Phasics的技術通過直接測量穿過標本光束的相位,能夠提供關于標本的大量信息。相較于熒光成像,Phasics技術不需要任何標記,因此對于生物標本沒有任何損壞。除此之外因為測量的是生物內在的特性,而不是標記染色,因此Phasics的信息更加可靠。最后,Phasics提供一個細胞更加完整的視圖:即使沒有染色,所有結構也 ...
同位點的自發熒光,采用了 785 nm 光纖拉曼光譜。光纖拉曼光譜儀由具有 1 根激發光纖(纖芯尺寸:300 μm)的分叉光纖探頭(Emvision LLC)和 785 nm 激光二極管(FC -785-350-MM2-PC-1-0-RM,RGBLase)作為激發源耦合到光纖探頭的 1 根激發光纖,高通量光譜儀(XPE85-NIR,Nanobase)耦合到 7 根收集光纖探頭和熱電 (TE) 冷卻電荷耦合器件 (CCD)相機(iDus 401 BR-DD,Andor)獲取通過光譜儀的斯托克斯-拉曼散射光子。拉曼光譜的校準是通過使用汞氖 (Hg-Ne) 校準源實現的。我們間隔不同培養時間分別從患 ...
子三光子激發熒光、二次和三次諧波生成、相干拉曼反斯托克斯散射)可用作對比機制,以提供生物樣品的補充信息。在相干非線性顯微鏡中,信號和散射方向由激發場分布和樣品微觀結構之間的相互作用產生,因此,定量圖像解釋需要建模描述。當前不足:現有的基于角譜表示(ASR)計算聚焦點附近的激發場分布,基于格林函數(Green)將非線性響應從聚焦區域傳播到探測器平面的模擬策略及已建立的大多數數值模型忽略了焦點附近樣品光學異質性引起的場的失真的影響。解決方案:巴黎理工學院的Josephine Morizet和Nicolas Olivier等人將有限差分時域(FDTD)方法(FDTD已被用于模擬寬場、共聚焦、相襯等多 ...
吸收濾光片、熒光濾光片、中性密度濾光片、陷波濾光片等,不一一細舉。常見濾光片參數詳解(1)通帶:能通過激光的波段范圍。(2)帶寬:不同于通帶的概念,它是指通帶范圍內最大透過率一半位置處的波段范圍。(3)中心波長:帶寬的中心位置為中心波長或指濾光片在實際應用中所使用的波長。(4)透射率:對可透過波段的光的透射能力,透射率越大越好。(5)峰值透射率:濾光片損耗后能透過的最大值。(6)截止范圍:通帶之外的波段范圍。(7)截止率:截止區所對應的透過率,透過率越小越好。(8)過渡帶寬度:根據濾光片截止深度不同,指定的濾光片截止深度和透過率峰1/2位置處之間允許的最大光譜寬度。(9)斜率:通常描述邊緣濾光 ...
校正方法(如熒光標記)的組合。以高準確度(~1nm)執行的實時三維聚焦鎖定將來自單個熒光事件的光子收集z大化,并且與沒有主動穩定的標準方法相比,定位精度提高了>10 倍。不準確或緩慢的主動校正會導致漂移,降低定位精度并顯著降低原位分辨率(即使在過濾或分組等分析后處理之后也是如此)。通過結合光學捕獲和優化單個發射器的x/y位置和寬度 (z),已將具有納米精度的實時聚焦鎖定應用于體外樣品。與細胞成像兼容的新發展依賴于基準點(fiducial)的隨機沉積(deposition)或明場圖像中樣品本身的透射輪廓。然而,當在距離蓋玻片>5μm的深度進行成像時,這些方法在商用軸向聚焦鎖定(通常具 ...
復用通過背景熒光的積累降低了信噪比(SNR),并加劇了大腦發熱。雖然隨機存取多光子顯微鏡允許在三個維度上快速光學訪問神經元目標,但該方法在記錄行為動物(behaving animals)時受到運動偽影的挑戰。隨機存取多光子(random-access multiphoton, RAMP)顯微鏡以不連續的三維柵格掃描中的一系列不相交的感興趣點 (POI) 為目標,從而截斷空間采樣以在時域中加速采樣。三維RAMP顯微鏡已使用聲光偏轉器(acousto-optic deflector, AOD) 實現,它通過掃描光束的傾斜和離焦相位調制來控制激發焦點的三維位置。然而,RAMP記錄僅限于體外操作和麻醉 ...
可以減少離焦熒光,從而產生更銳利的三維圖像。另外,還可以將分布式點擴散函數(PSF)有意設計到成像系統中,從而獲得如單幀高光譜成像、單幀三維成像這樣的能力。在這種情況里,采用多路復用的光學器件通過將物空間中的每一點映射到成像傳感器上的分布式模式以將二維和三維信息編碼,然后利用解卷積算法從模糊或編碼的測量來重建編碼的清晰圖像或體積。現有的解卷積算法應用場景有限。現今已有多種解卷積算法。經典的有Wiener濾波(屬于closed-form方法)、Richardson-Lucy和快速迭代收斂閾值算法(屬于迭代優化方法)等。但是現有的解卷積方法往往需要精心挑選的先驗信息(如total variatio ...
。基因編碼的熒光指示劑和光學成像使對活體動物神經元結構和功能的選擇性標記和觀察成為可能,這改變了神經回路的研究。此類技術需要將光聚焦到腦組織內。由于折射率不均勻引起的隨機光散射,單細胞分辨率的功能成像探測深度通常在1 毫米的量級。即使對于厘米級的小鼠大腦,這種穿透深度也將大腦區域的光學成像限制在了淺表層,因此除非采用侵入式手段,否則大部分大腦仍然無法進行高分辨率光學成像。盡管功能磁共振成像和基于超聲的方法等宏觀和介觀成像模式可以對深層大腦結構進行成像,但它們缺乏對理解神經回路至關重要的單細胞分辨率和靈敏度。因此,目前選擇在腦部插入微型光學探頭的方式實現細胞級分辨率深層腦成像。目前已經開發了幾種 ...
法是測量含有熒光染料的樣品的TPEF。更容易的是使用 GaAsP 光電二極管,它在600 至 1360 nm 具有雙光子光譜響應。該帶寬足以覆蓋鈦藍寶石激光器的可調諧范圍和用于多光子顯微鏡的許多其它激光器的典型中心頻率。此外,GaAsP 光電二極管價格低廉,并且不易受到熒光染料典型的光漂白或光損傷問題的影響。圖 15 是三個不同自相關的示例。除了激光的相干長度外,一階相關性沒有揭示任何有關脈沖寬度的信息。使用非線性、強度相關信號的高階自相關可以提供有關脈沖中色散量和色散類型的信息。對于二階干涉自相關,包絡函數的峰值與非零基線的比率為 8:1,而對于三階自相關,該比率為 32:1。圖 16 所示 ...
曼信號通常被熒光輻射污染。通過對發射信號進行時間門控,可以將拉曼信號從熒光背景中分離出來:如果短脈沖光激發分子,拉曼信號在脈沖的脈寬范圍內發射,而熒光的壽命更長。根據這個想法可得到無熒光的拉曼光譜。但是儀器變得更復雜,且由于通過門控系統和光譜儀不可避免的損耗,信號的幅值顯著降低。此外通過光學元件,特別是光譜儀光柵的傳輸通常是偏振相關的。新的拉曼信號的采集和分析方法解決了這兩個障礙:相對較弱的信號水平和不消失的熒光背景。通過將采集到的拉曼信號送入足夠長的光纖中,拉曼峰可以被時間分離。通過將時間門控光電倍增管(PMT)與時間相關檢測相結合,能夠在時域內實現高靈敏度的信號檢測。利用光纖的色散規律可以 ...
或 投遞簡歷至: hr@auniontech.com