D7點衍射激光干涉儀用于測量介觀顯微物鏡的檢測方案介觀物鏡,因其具有復雜的光學結構和出色的像差優化,可以實現高NA和超大成像 FOV,顯著提高光學顯微鏡成像通量的特點而被人們熟知。介觀顯微物鏡可用于廣域成像系統、激光共焦掃描成像系統和雙光子成像等系統,具有重要的研究意義。本文介紹了一種用D7點衍射激光干涉儀測量介觀顯微物鏡的檢測方案,具體方案如下圖所示:1.光源部分1. D7系統的光源為連續波(CW)單模(SLM)激光器:具有不同波長的相干性,覆蓋了激光器的工作光譜范圍包括:480 nm, 532 nm, 633 nm, 830 nm, 1030 nm。2. 激光器是光纖耦合的,可以通過光纖插 ...
原理 法珀干涉儀是一種典型的多光束干涉儀,當一束與平行板呈角度的光射入,會在平行板中發生多次反射和折射,這些相同頻率的光會發生干涉,形成多光束干涉。光從折射率為n_0的物質中,以角度為θ_1的入射角進入間隔距離為d的平行板中,平板中的折射率為n_1,由此光在板內的折射率為θ_2,在兩塊平板間經過多次反射和折射,光程差相同的同頻光會發生干涉。光程差引起的相位差使投射光強和反射光強遵從干涉強度分布的公式,即艾里公式。測量反射光強可測量d的大小,這就是光纖法珀腔壓力傳感器的基本原理。而從結構上來看,法珀干涉儀的結構如下圖所示:上圖的結構解釋,G_1和G_2是兩塊相互平行的高反膜,間距依然設為d,反 ...
ehnder干涉儀中,形成調幅器。圖4:Mach-Zehnder振幅調制器施加電壓會導致分支之間的相對相位差,從而通過干擾導致器件輸出處的輸出功率的變化。因此,設備傳輸可以控制在min值和max值(P min到Pmax)之間。從打開狀態到關閉狀態切換需要π的相對相位差。所需的電壓稱為調幅器的半波電壓Vπ。由于推拉操作,調幅器的半波電壓是具有相等電極長度的相位調制器的半波電壓的一半。例如,在635 nm處可以預計紅色為1.5 V,在約1550 nm的通信波長范圍內為5V。圖5:輸入/輸出指示燈圖6:振幅調制器特性曲線將射頻信號作為調制電壓應用于電極,該電壓輸入被轉換為振幅信息。這個振幅輸出取決于 ...
馬赫-曾德爾干涉儀耦合環結構(MZICR)分別如圖1(A) -1 (c)所示,是三種不同的器件結構,用于電光電場傳感器。所有的結構都是通過將器件蝕刻到與石英襯底結合的TFLN中來制造的,該襯底與集成光子芯片通過光纖耦合,該芯片具有光柵耦合器,可以將光纖中的光耦合到芯片上的亞微米鈮酸鋰光波導上。圖1所示。(a)馬赫-曾德電磁場傳感器原理圖,(b)微環諧振器傳感器,(c)馬赫-曾德干涉儀耦合微環諧振器原理圖。對于Mach-Zehnder器件結構,耦合光使用1×2多模干涉(MMI)耦合器裝置在Mach-Zehnder干涉儀的兩臂之間進行分割。Mach-Zehnder干涉儀的一個臂被極化以逆轉鈮酸鋰晶 ...
(MZI)干涉儀部分(圖1a)和一個輸入和兩個輸出光柵耦合器(圖1b)組成。在Mach-Zehnder干涉儀部分,使用1 × 2 MMI耦合器將光纖耦合光分成兩臂。一個MZI臂被極化以逆轉鈮酸鋰晶體的自發極化方向(圖1c)。因此,對于一個MZI臂,在給定的電場下折射率增加,而在相同的電場下,另一個臂的折射率會減少。因此,通過MZI的激光在一個臂中經歷了+ φ的相移,在另一個臂中經歷了?φ的相移。太赫茲波從自由空間耦合到MZI 電光傳感器,激光探針脈沖利用垂直于傳感器芯片表面的保偏光纖耦合到電光傳感器芯片。目前的器件由600nm鈮酸鋰在500um熔融二氧化硅襯底上制成,工作波長為1550nm。 ...
。采用由激光干涉儀頭(KEYENCE, LK-G32)和控制器(LKG3001)組成的單點激光測振儀對動鏡的運動進行了詳細的研究。該儀器允許在±5毫米范圍內的位移測量,位置誤差小于50納米。圖7中的數據集表示一個鏡像周期內的4000多個點。步長遵循正弦模式,在零位移點附近max,而在行程范圍的兩端接近零。圖7所示的一組單獨的測量表示瞬態時間響應分析(即。齒輪咔嗒聲之間的階躍響應。在接收到輸入信號(即齒輪咔嗒聲)后,步長上升時間為1毫秒,響應穩定得很快,這表明這是一個近臨界阻尼系統。在沉淀區測得83 nm的峰間值。圖5在MEMS中,在鏡面驅動過程中保持對準精度是一個重大挑戰,因為如此大的位移通常 ...
(通常是光學干涉儀)所需的時間來測定到物體或表面的距離。雖然測量概念很簡單,但要同時精確且快速地完成測量極具挑戰,通常需要犧牲其中一項。近期,中科院西安光學精密機械研究所(XIOPM)和華中科技大學(HUST)的研究人員開發了一種新型精密測距方法,使用兩個光學頻率梳來達到測量精度和測量速度的平衡。在該項目中,Moku:Lab— 基于FPGA的可重構的精密測試測量儀器,為科研人員提供了一體化精簡的激光鎖頻解決方案,不僅顯著提高了測量質量且加速了項目進展。相關研究成果以“Rapid and precise distance measurement with hybrid comb lasers”為 ...
傳輸。非等臂干涉儀是產生 Time-bin 量子比特的一種常用方法。Time-bin編碼的概念,利用單光子。光路用紅線標出。光學元件:BS -分束器,M -反射鏡,φ-長程總相位變化。取自Misiaszek-Schreyner, Marta. "Applications of single-photon technology." arxiv preprint arxiv:2205.10221(2022).實驗內容在本文中,通過將4.09-GHz的鎖模激光器的光通過80ps的延遲干涉儀(12.5-GHz自由光譜范圍)導入到非線性晶體中,以實現高速糾纏源。低抖動差分超導納米線單 ...
航天器間激光干涉儀。GRACE Follow-On 干涉儀能夠測量航天器分離的亞微米變化。在建立鏈路之前,激光器必須通過掃描五維空間來找到彼此;每束激光的傾斜度和頻率差 [1]。LISA 引力波探測器可能需要類似的采集掃描,相干自由空間激光通信和光量子密鑰分發鏈路也可能需要類似的采集掃描,例如從地面到太空。本應用說明將介紹如何使用 Moku:Lab 任意波形發生器生成復雜的 2D 掃描模式。首先,我們將展示如何將 AWG 波形加載到 Moku:Lab 中,以便在 XY 模式下在示波器上進行可視化。接下來,我們添加快速轉向鏡和激光系統,以生成適合采集系統的任意掃描模式。Moku:Lab任意波形發 ...
樣才能方便與干涉儀進行高精度對準。由于光頻梳偏頻測量模塊(COSMO)使用了納米光子波導,它可以使用比傳統方法低得多的脈沖能量來檢測載波包絡偏移頻率,它允許以小于200 pJ (即frep頻率=1 GHz時,平均功率< 200 mW,其中frep是指重復頻率)的脈沖能量精確檢測fceo,這使得光頻梳偏頻測量模塊(COSMO)可以與各種頻率的光梳一起使用,包括那些功率很低的光頻梳或重復頻率很高的光頻梳。圖2如圖2所示的簡單配置中,將鎖模光纖激光器與光頻梳偏頻測量模塊(COSMO)連接,再將該模塊連接到示波器上,我們就可以在示波器上看到三個峰,分別是fceo、fceo-frep、frep.下 ...
或 投遞簡歷至: hr@auniontech.com