收入射光能量躍遷到導帶,產生電子空穴對,這時候去掉激發光,材料導帶中的電子從激發態回到基態,緩慢放出較長波長的光,放出的這種光就叫熒光.如果把熒光的能量--波長關系圖作出來,那么這個關系圖就是熒光光譜.電子從激發態回到基態經歷的時間即為熒光壽命.為了評估異質結中載流子的分離和傳輸特性,可對異質結進行熒光壽命測試.上圖紅藍黑色曲線分別對應WS2,ReS2&WS2界面,ReS2的熒光壽命.可以看到ReS2的熒光壽命幾乎沒有信號,由于ReS2區域的壽命比WS2和界面區域的信號弱得多,因此在這種泵浦探測波長下,無法從ReS2到WS2傳輸光生載流子.所以從WS2到ReS2的光生載流子的時間動力學 ...
收能量從基態躍遷到某個激發態,再以輻射躍遷的方式發出熒光回到基態。激發停止之后,分子激發出的熒光強度降到激發最大強度時的1/e所需的時間被稱為熒光壽命,它表示粒子在激發態存在的平均時間,一般被稱為激發態的熒光壽命。熒光壽命僅僅與熒光物質自身的結構和其所處的微環境的極性和粘度等條件有關,而與激發光強度、熒光團濃度無關,因此通常來說是絕對的。通過測定熒光壽命,我們可以直接了解所研究的體系所發生的變化,了解體系中許多復雜的分子間作用過程。時間相關單光子計數法(TCSPC)是目前測量熒光壽命的主要技術,其工作原理如下圖所示:使用一個窄脈沖激光激發樣品,然后檢測樣品發出的第一個熒光光子到達光信號接收器的 ...
快即以無輻射躍遷的形式衰減到亞穩態能級E2 上。由于Er3+ 在能級E2 上壽命較長,在其上的粒子數聚集越來越多,從而在能級E2和E1之間形成粒子數的反轉分布。這樣,當具有1550 nm波長的光信號λEr通過這段摻鉺光纖時,處于亞穩態能級的粒子即以受激輻射的形式躍遷到基態,并產生和入射光信號光(1550 nm)完全一樣的光子,從而大大增加了信號光中的光子數量,也即實現了信號光在摻鉺光纖中輸出時不斷被放大的功能。因此,利用摻鉺光纖即可制成摻鉺光纖放大器EDFA。摻鉺光纖纖芯中鉺的摻雜濃度取決于光纖放大器的設計要求,通常摻雜濃度在100-1000×10-6 ,且集中在3-6 um的纖芯中。結語:光 ...
價帶中的電子躍遷到導帶,產生電子-空穴對,在內建電場的作用下,空穴和電子分別往正極,負極遷移,載流子的定向移動于是形成光電流。 ...
φ1的光子,躍遷至中間亞穩態E1能級,若光子的振動能量恰好與E1能級及更高激發態能級E2的能量間隔匹配,那么E1能級上的該離子通過吸收光子能量而躍遷至E2能級,從而形成雙光子吸收,只要高能級上粒子數量夠多,形成粒子數反轉,那么就可以實現較高頻率的激光發射,出現上轉換發光。b 能量傳遞過程ETU能量傳遞是指通過非輻射過程將兩個能量相近的激發態離子A、B耦合,其中A把能量轉移給B回到基態,B接受能量而躍遷到更高的能態,從而使B能夠從更高的能級發射。c 光子雪崩過程PA光子雪崩過程是激發態吸收和能量傳遞過程相結合發生的上轉換發光。其實要發生上轉換發光,發光中心的亞穩態需要較長的能級壽命,光子能在亞穩 ...
能量并從價帶躍遷到導帶,在天線表面瞬間(10-14 s)生成光生載流子(電子)。電子在偏置電場的加速作用下定向遷移生成瞬態光電流,進而向外輻射太赫茲波。理論上只要外加電場足夠強,太赫茲輻射就可以得到顯著的增強,但是實際實驗中過高的能量會導致光電導開關被損壞。另外半導體基底、金屬電極的幾何結構與泵浦激光脈沖持續時間共同影響著光電導天線(光電導開關)的性能。半導體基底須具有高載流子遷移速率、極短的載流子壽命以及高擊穿閾值。使用不同的波段激發往往需要不同的基底,常用的半導體基底材料有低溫生長的砷化鎵(LT-GaAs)、藍寶石(RD-SOS)等。光學整流法在線性材料中,雙光束傳輸時相互不干擾,可獨立傳 ...
是由原子能級躍遷所產生,當原子由基態(低能級)向激發態(高能級)躍遷時,需要從外界吸收一個光子;而當原子由激發態向基態躍遷時,則需要向外界釋放一個光子。一個光子的能量:當我們用一個入射光子掠過原子時,就有一定幾率使該原子由激發態向基態躍遷,從而釋放出一個光子,最終,我們將得到兩個光子(入射光子和受激輻射所產生的光子)。并且,原子受激輻射所產生的光子與原入射光的光子是性質全同的,即能量(頻率)、偏振、相位都相同。這就是受激輻射的光放大現象,也是激光產生的底層機制。那么,只要我們讓足夠多的原子受激輻射(從激發態向基態躍遷),不就可以將原入射光放大,從而產生激光了么?雖然原理上是這樣,但要產生激光卻 ...
問特定的原子躍遷,以操縱和冷卻原子和離子。通過使用高功率光纖泵浦激光器在 MgO:PPLN 中產生和頻,可以輕松實現瓦級功率的冷卻激光器。MSFG626可用于冷卻鈹離子,兩個泵浦激光器分別為1051nm和1550nm,然后在MSFG626中結合,產生626nm。使用BBO晶體,這種輸出可以在313nm處增加一倍頻率至9Be+離子躍遷。類似地,我們的MSHG637已經被用來演示銫原子從1560nm和1077nm冷卻到637nm,然后頻率加倍到原子躍遷。我們的MSFG 和頻晶體系列如下所示。為了實現高效的和頻,理想情況下,您希望兩束泵浦光束共焦聚焦到 PPLN(即晶體長度與共焦參數的比率為 1), ...
近分子的電子躍遷時,拉曼信號可以大大增強,在熒光中占主導地位。這種現象是由于拉曼光譜的光譜選擇規則,導致共振拉曼光譜。一些非線性技術,如相干反斯托克斯拉曼光譜和受激拉曼光譜(SRS)也可以顯著增強拉曼信號,同時最小化檢測到的背景熒光的比例。7.其他抑制熒光的方法還包括偏振門控、采樣光學和幾何圖形、光漂白等。您可以通過我們的官方網站了解更多顯微拉曼光譜儀的相關產品信息,或直接來電咨詢4006-888-532。 ...
半高寬與原子躍遷線的自然線寬相當,約MHz量級,并且原子的能級十分穩定,因此共振吸收峰能夠作為理想的激光穩頻基準頻率。87Rb原子的超精細能級結構但是由于在室溫下原子進行強烈的熱運動,運動速度在一個很大的范圍內分布,多普勒效應就很明顯了。對于某一頻率的激光,不同速度的原子“感受”的頻率是不同的,這導致了激光的頻率在很大范圍內都會有相應的原子發生吸收,使吸收峰被展寬到原子平均速度的的多普勒移頻量級,約幾百MHz。并且對于距離較近的躍遷線,在這個展寬下會被合并到一起,吸收峰進一步被展寬。正是因為多普勒展寬,原子的吸收譜線寬比起外腔半導體激光器的線寬大了兩到三個數量級,無法用于穩頻。需要在多普勒背景 ...
或 投遞簡歷至: hr@auniontech.com