展示全部
為了發展新的光學介質(光子晶體光纖),研究人員已經被光波長尺度,即亞微米量級或更小尺度的結構材料表現出的能力所吸引。光子晶體通過將規則的微結構引入光學材料,徹底改變了材料的光學特性。它可看作是半導體物理學成果在光子領域中的拓展。實際上,半導體的能帶結構是電子和晶格引起的周期性電動勢之間相互作用的結果。通過求解周期性電動勢的薛定諤方程,就能得到被禁帶所分離的電子能量狀態。類似地,如果把這種周期性變化的電動勢用周期性變化的介電常數,即折射率來替換,同時,把薛定諤替換成經典的電磁波波動方程,就能獲得光子晶體中的光子帶隙。早在1987年,多倫多大學的Sajeev John和貝爾通信實驗室的Eli Ya ...
差的計算任何光學介質,對透明波段中不同波長的單色光具有不同的折射率,波長短者折射率大。 光學系統多半用白光成像,白光入射于任何形狀的介質分界面時,只要入射角不為零,各種色光將因色散而有不同的傳播途徑,結果導致各種色光有不同的成像位置和不同的成像倍率。這種成像的色差異稱為色差。通常用兩種按接收器的性質而選定的單色光來描達色差。對于目視光學系統,都選為藍色的 F光和紅色的C光。色差有兩種。其中描述這兩種色光對軸上物點成像位置差異的色差稱為位置色差或軸向色差,因不同色光成像倍率的不同而造成物體的像大小差異的色差稱為倍率色差或垂軸色差。如下圖,軸上點A發出一束近軸白光,經光學系統后,其中F光交光軸于 ...
差的計算任何光學介質,對透明波段中不同波長的單色光具有不同的折射率,波長短者折射率大。 光學系統多半用白光成像,白光入射于任何形狀的介質分界面時,只要入射角不為零,各種色光將因色散而有不同的傳播途徑,結果導致各種色光有不同的成像位置和不同的成像倍率。這種成像的色差異稱為色差。通常用兩種按接收器的性質而選定的單色光來描達色差。對于目視光學系統,都選為藍色的 F光和紅色的C光。色差有兩種。其中描述這兩種色光對軸上物點成像位置差異的色差稱為位置色差或軸向色差,因不同色光成像倍率的不同而造成物體的像大小差異的色差稱為倍率色差或垂軸色差。校正了位置色差的光學系統,只能使二種色光的像點或像面重合在一起,但 ...
)的影響下的光學介質。與光波傳播方向平行的外部磁場(圖1)。偏振面的旋轉角由以下方程定義β= V ?d ?B其中(指MO傳感器) 與外部磁場B的靜態磁通密度成比例,d是光在MO介質中通過的距離,V是特定材料的Verdet常數,用于表示材料的特定旋轉強度。并且因材料不同而不同。因此,Verdet常數取決于光的波長和MO材料特定的折射率。圖2.不同制造階段的磁光(MO)傳感器:(從左到右)初始基片,涂有MO層,涂有反射層。三、磁場的可視化磁光傳感器技術是一種用于磁場分析和可視化的繪圖方法。為了對磁場進行光學可視化,MO-傳感器被放置在與感興趣的磁性材料的直接接觸中,并用偏振光進行照明。光線穿過透明 ...
)的影響下的光學介質。與光波傳播方向平行的外部磁場(圖1)。偏振面的旋轉角由以下方程定義其中(指MO傳感器) 與外部磁場B的靜態磁通密度成比例,d是光在MO介質中通過的距離,V是特定材料的Verdet常數,用于表示材料的特定旋轉強度。并且因材料不同而不同。因此,Verdet常數取決于光的波長四、COMS-Magview系列磁場相機COMS-Magview系列磁場相機是一種高分辨率、高精度的磁性材料、部件和表面測量和可視化系統,不僅可以使磁場和磁性結構可見,還可以測量磁通量密度。CMOS-MagView是一種用于磁場光學可視化的創新設備。高度工程化的磁光傳感器技術可以直接以高光學分辨率觀察磁性材 ...
理想的非線性光學介質,因為與傳統光纖相比,光子晶體光纖的纖芯更小,從而更容易產生非線性效應[2],當改變包層空氣孔直徑和空氣孔間距時,有效模場的能量密度也會發生強弱變化,從而使光纖的非線性性能發生相應變化,易于實現非線性效應。3.有效模場面積特性光子晶體光纖中,有效模場面積[3]是一個重要的參數,與光纖非線性效應緊密相關。有效模場面積是描述光纖中光模式分布范圍的參數,在光纖傳輸和光信號調制中具有重要意義。以下是PCF的有效模場面積特性的一些關鍵點:大模場面積:相對于傳統的單模光纖,PCF通常具有較大的有效模場面積。大模場面積意味著光信號的能量分布更廣,使得PCF能夠容納更多的光信號,并提供更高 ...
或 投遞簡歷至: hr@auniontech.com