展示全部
多通道LED光源/固態(tài)多色光源
高功率光纖耦合LED光源
375nm激光器
405nm激光器
445nm激光器
488nm激光器
TLS120Xe 高功率可調(diào)諧光源
非接觸式多普勒激光測振儀
低抖動皮秒脈沖半導(dǎo)體激光器
恒比鑒相器CFD
高振幅脈沖發(fā)生器Rider Series PG-1500
SLM產(chǎn)生的激發(fā)模式3D鈣成像技術(shù)的基本原理在哺乳動物的神經(jīng)系統(tǒng)中,鈣離子是一類重要的神經(jīng)元胞內(nèi)信號分子。在靜息狀態(tài)下,大部分神經(jīng)元的胞內(nèi)鈣離子濃度為50-100nM;當(dāng)神經(jīng)元活動(興奮)的時候,神經(jīng)元胞內(nèi)鈣離子濃度迅速上升10 - 100 倍,增加的鈣離子對于包含有神經(jīng)遞質(zhì)的突觸囊泡的胞吐釋放過程必不可少。也就是說神經(jīng)元的活動與其內(nèi)部的鈣離子濃度密切相關(guān),神經(jīng)元在放電的時候會爆發(fā)出一個短暫的鈣離子濃度高峰。神經(jīng)元鈣成像(calcium imaging)技術(shù)的原理就是借助鈣離子濃度與神經(jīng)元活動之間的嚴(yán)格對應(yīng)關(guān)系,利用特殊的熒光染料或者蛋白質(zhì)熒光探針(鈣離子指示劑,calcium indicat ...
可編程神經(jīng)元激發(fā)。 其中液晶空間光調(diào)制器(SLM)是高分辨率的相位調(diào)制器,能夠創(chuàng)建復(fù)雜的相位圖,以在三維(3D)體積內(nèi)可實現(xiàn)任意的光束偏轉(zhuǎn),可實現(xiàn)三維(3D)體積重塑。 Meadowlark Optics(MLO)公司最新的SLM將面填充率從83.4%提高到96%,并將分辨率從512 x 512像素提高到1920 x 1152像素,同時在1064 nm處達(dá)到300 Hz的液晶響應(yīng)時間(0-2π)和845Hz的幀頻,可覆蓋波段:850-1650nm。 本文總結(jié)了MeadowlarkOptics公司新的SLM的功能,以及SLM在雙光子及三光子顯微微鏡成像應(yīng)用中的優(yōu)勢。關(guān)鍵詞: 高響應(yīng)速度,高分辨率 ...
on顯微鏡受激發(fā)射損耗顯微(STED)在STED顯微術(shù)中,有效熒光發(fā)光面積的減小是通過受激發(fā)射效應(yīng)來實現(xiàn)的。一個典型的STED顯微系統(tǒng)中需要兩束照明光,其中一束為激發(fā)光,另外一束為損耗光。當(dāng)激發(fā)光的照射使得其衍射斑范圍內(nèi)的熒光分子被激發(fā),其中的 電子躍遷到激發(fā)態(tài)后,損耗光使得部分處于激發(fā)光斑外圍的電子以受激發(fā)射的方式回到基態(tài),其余位于激發(fā)光斑中心的被激發(fā)電子則不受損耗光的影響,繼續(xù)以自發(fā)熒光的方式回到基態(tài)。由于在受激發(fā)射過程中所發(fā)出的熒光和自發(fā)熒光的波長及傳播方向均不同,因此真正被探測器所接受到的光子均是由位于激發(fā)光斑中心部分的熒光樣品通過自發(fā)熒光方式產(chǎn)生的。由此,有效熒光的發(fā)光面積得以減小, ...
532nm的激發(fā)光在顯微鏡整視場下均勻的激發(fā)。如圖 1為 圖 2中選擇的不同研究區(qū)域的PL光譜。 圖 2 顯示的是整個器件的PL成像圖譜[3]。全局成像可快速獲得樣品的不均一性。通過這種技術(shù)研究人員可以在空間上監(jiān)控多個屬性。的確,PL最大限度詳盡的提供了準(zhǔn)費(fèi)米能級分裂的帶隙和波動的成像圖[4]。借助其獲得zuanli的光譜和光度的絕對校準(zhǔn),IRDEP可以獲取器件的光電特性,例如EQE,Voc等。上海昊量光電設(shè)備有限公司作為Photon 公司在國內(nèi)的獨(dú)家代理,該產(chǎn)品主要特點(diǎn)如下:1)激發(fā)光源均勻分布整視野,作用于樣品表面激光功率密度較低,同時避免了由于局部照明造成的載流子復(fù)合即使在較低功率下可獲 ...
的整個視場被激發(fā),并同時收集來自一百萬個點(diǎn)的PL信號。 圖1,(a)和(b)展示了CIGS微型CIGS太陽能電池的PL和EL圖譜,利用他們的光譜信息和絕對校準(zhǔn)與廣義普朗克定律相結(jié)合,IRDEP的研究人員提取了樣品的準(zhǔn)費(fèi)米能級分裂成像圖見圖(c)和(d)該參數(shù)與太陽能電池的最大電壓直接相關(guān)。借助太陽能電池和LED間的倒易關(guān)系,可從EL成像圖譜中推算出外量子效率(EQE)。結(jié)果展示了微型太陽能電池的基本性質(zhì)。例如,準(zhǔn)費(fèi)米能級分裂以及潛在的外量子效率可以在樣品微納尺度上獲得。上海昊量光電設(shè)備有限公司作為Photon 公司在國內(nèi)的獨(dú)家代理,該產(chǎn)品主要特點(diǎn)如下:1)激發(fā)光源均勻分布整視野,作用于樣品表 ...
驗定制化服務(wù)激發(fā)光光纖接口3.熒光壽命成像模塊測量范圍100ps-10us時間分辨率<50ps探測效率高達(dá)49%死時間<77ns激發(fā)光波長 266nm-1990nm脈寬6ns重復(fù)頻率31.15KHZ-80MHZ4.光電流成像模塊探針臺位移精度1um(X/Y),10um(Z)探針臺移動范圍 13mm(X/Y).20mm(Z)探針溢泄電流 10fA標(biāo)準(zhǔn)選配源表 Keithley 2400, 其他源表可做適配5.電感耦合等離子體發(fā)射光譜模塊6.激發(fā)光及信號光偏振控制模塊7.低波數(shù)拉曼模塊 ...
單光子激發(fā)相比,雙光子激發(fā)具有更好的限制,因為由兩個光子同時激發(fā)的可能性與光強(qiáng)度的平方成正比。因此,雙光子激發(fā)以焦點(diǎn)距離的四次冪衰減[8]。然而,這種低激發(fā)的可能性使得操作模式對改變焦點(diǎn)的PSF的像差敏感。為了確保在大體積上的一致激發(fā),校正顯微鏡中SLM和其余光學(xué)元件的像差是很重要的。 許多用于表征和校正像差的算法都基于Zernike多項式。然而,對圓形孔徑的依賴不適用于描述正方形或矩形陣列的像差。已經(jīng)開發(fā)了基于SLM的干涉子孔徑的替代策略[9],以確保SLM的有效區(qū)域上的像差可以被校正到λ/ 40或更好。如圖7所示,由于使用了制造工藝,MLO SLM的本身的波前像差很低。(a)原始 ...
60nm的受激發(fā)射損耗,我們還是利用線粒體和核糖體來說明,只不過這個線粒體的直徑改成200nm。而科學(xué)家的辦法就是利用“遮擋”用一種只能給線粒體染上的熒光蛋白給200nm的線粒體染上,然后用另一種特殊的只能染核糖體的熒光蛋白給核糖體染上。用紅光波長的光激發(fā)線粒體發(fā)熒光,然后用藍(lán)光波長的光照射,這可就用到神奇的三原色了(PS:就是小學(xué)常玩的用藍(lán)色的水筆涂紅色的紙,最后紙成了黑色),藍(lán)光波長的光照會使原本激發(fā)線粒體發(fā)熒光的紅光失效,卻能讓核糖體上的蛋白發(fā)光。利用這樣的“遮擋”使得30nm的核糖體能被觀察到(PS:其實我感覺還是挺繞的)。雖然可以觀察到最小達(dá)20nm的目標(biāo),但是它的問題是超高的光損耗 ...
檢測區(qū)域,以激發(fā)流經(jīng)檢測區(qū)域的細(xì)胞產(chǎn)生熒光和散射光。檢測區(qū)域的熒光被同一物鏡收集后形成平行光束透過全反射鏡M2反射和多邊緣分色分光器(透射率>93%)透過后,到達(dá)分光鏡 DM1(透射率>95%),因此物鏡收集到的熒光約90% x 93%≈86%進(jìn)入熒光檢測通道。被多邊緣分色分光器透射的熒中,綠色熒光被二色分光鏡DM1反射至熒光檢測通道1(APD1),透過二色分光鏡DM1的黃色熒光被DM2反射至熒光檢測通道2(APD2),透過DM2紅色熒光則被二色分光鏡DM3反射至熒光檢測通道3(APD3),而透過DM3的近紅外熒光則被投射到熒光檢測通道4(APD4)。綠色熒光檢測通道入口處放置了濾 ...
iO2的直接激發(fā)。您可以通過我們的官方網(wǎng)站了解更多的產(chǎn)品信息,或直接來電咨詢4006-888-532。相關(guān)文獻(xiàn):Zhenbang Han,Xiaoming Zhao,etc. Facile synthesis of amidoximated PAN fiber-supported TiO2 for visible light driven photocatalysis[J]. Colloids and Surfaces A, 2020, 600: 124947. ...
或 投遞簡歷至: hr@auniontech.com